Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 May 06 2024 14:37:22
%S 1,1,0,1,1,2,2,1,1,2,0,0,2,1,1,2,5,1,3,0,2,1,1,2,5,4,8,5,8,4,5,2,2,1,
%T 1,2,5,2,0,8,6,6,9,2,9,11,2,1,1,2,5,15,1,16,10,9,16,1,15,11,6,15,11,
%U 14,2,1,1,2,5,15,14,13,3,17,0,18,4,5,7,14,16,15,1,10,2,1,1,2,5,15,6,19,3,0,10,9,1,20,1,12,9,5,6,6,9,4,16,22,2,1,1,2,5,15,23,0
%N Triangle read by rows: T(n,k) (n>=1, 0 <= k <= p where p = n-th prime) = Bell(k) mod p (cf. A000110).
%C The n-th row gives Bell numbers mod prime(n) and has length prime(n)+1.
%H Alois P. Heinz, <a href="/A214810/b214810.txt">Rows n = 1..100, flattened</a>
%H J. Levine and R. E. Dalton, <a href="https://doi.org/10.1090/S0025-5718-1962-0148604-2">Minimum Periods, Modulo p, of First Order Bell Exponential Integrals</a>, Mathematics of Computation, 16 (1962), 416-423. See Table 2.
%e Triangle begins:
%e [1, 1, 0],
%e [1, 1, 2, 2],
%e [1, 1, 2, 0, 0, 2],
%e [1, 1, 2, 5, 1, 3, 0, 2],
%e [1, 1, 2, 5, 4, 8, 5, 8, 4, 5, 2, 2],
%e [1, 1, 2, 5, 2, 0, 8, 6, 6, 9, 2, 9, 11, 2],
%e [1, 1, 2, 5, 15, 1, 16, 10, 9, 16, 1, 15, 11, 6, 15, 11, 14, 2],
%e [1, 1, 2, 5, 15, 14, 13, 3, 17, 0, 18, 4, 5, 7, 14, 16, 15, 1, 10, 2],
%e ...
%p T:= n-> (p-> seq(combinat[bell](k) mod p, k=0..p))(ithprime(n)):
%p seq(T(n), n=1..10); # _Alois P. Heinz_, Jun 07 2023
%t A214810row[n_]:=Mod[BellB[Range[0,Prime[n]]],Prime[n]];Array[A214810row,50] (* _Paolo Xausa_, Aug 07 2023 *)
%Y Cf. A000110, A054767.
%K nonn,look,tabf
%O 1,6
%A _N. J. A. Sloane_, Jul 31 2012