The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A208182 Numbers that match polynomials over {0,1} that have a factor containing -3 as a coefficient; see Comments. 4
 8421, 8853, 9093, 10311, 10353, 10389, 10437, 10563, 10689, 10821, 10833, 10839, 10869, 11157, 12183, 12453, 14469, 14973, 14997, 16779, 16842, 17055, 17465, 17706, 18186, 18515, 18639, 19985, 20025, 20622, 20643, 20706, 20778 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The polynomials having coefficients in {0,1} are enumerated at A206073.  They include the following: p(1,x) = 1 p(2,x) = x p(3,x) = x + 1 p(4,x) = x^2 p(8421,x) =1 + x^2 + x^5 + x^6 + x^7 + x^13 = (1 + x) (1 + x + x^2)*f(x), where f(x) =  1 - 2 x + 3 x^2 - 3 x^3 + 2 x^4 - x^7 + 2 x^8 - 2 x^9 + x^10. This show that a factor of p(8421,x) has a factor that has -3 as a coefficient.  Actually, 8421 is the least n for which p(n,x) has a coefficient not in {-2,-1,0,1,2,3}. The enumeration scheme for all nonzero polynomials with coefficients in {0,1} is introduced in Comments at A206073.  The sequence A206073 itself enumerates only those polynomials that are irreducible over the ring of polynomials having integer coefficients; therefore, A206073 and A208181 are disjoint. LINKS MATHEMATICA t = Table[IntegerDigits[n, 2], {n, 1, 25000}]; b[n_] := Reverse[Table[x^k, {k, 0, n}]] p[n_, x_] := p[n, x] = t[[n]].b[-1 + Length[t[[n]]]] TableForm[Table[{n, p[n, x], Factor[p[n, x]]}, {n, 1, 25000}]]; DeleteCases[ Map[{#[], Cases[#[], {___, -3, ___}]} &,   Map[{#[], CoefficientList[#[], x]} &,    Map[{#[], Map[#[] &, #[]]} &,     Map[{#[], Rest[FactorList[#[]]]} &,      Table[{n, Factor[p[n, x]]}, {n, 1, 24900}]]]]], {_, {}}] Map[#[] &, %]   (* A208182 *) (* Peter J. C. Moses, Feb 22 1012 *) CROSSREFS Cf. A208179, A206073, A206284, A208180, A208181. Sequence in context: A232300 A214117 A237137 * A093221 A023321 A116258 Adjacent sequences:  A208179 A208180 A208181 * A208183 A208184 A208185 KEYWORD nonn AUTHOR Clark Kimberling, Feb 24 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 5 23:01 EDT 2022. Contains 357261 sequences. (Running on oeis4.)