login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252764
Number of length n primitive (=aperiodic or period n) n-ary words.
4
1, 2, 24, 240, 3120, 46410, 823536, 16773120, 387419760, 9999899910, 285311670600, 8916097441680, 302875106592240, 11112006720144330, 437893890380096640, 18446744069414584320, 827240261886336764160, 39346408075098144278664, 1978419655660313589123960
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{d|n} n^d * mu(n/d), mu = A008683.
a(n) = A075147(n)*n.
a(n) = A074650(n,n) * n.
a(n) = A143325(n,n) * n.
a(n) = A143324(n,n).
EXAMPLE
a(3) = 24 because there are 24 primitive words of length 3 over 3-letter alphabet {a,b,c}: aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbc, bca, bcb, bcc, caa, cab, cac, cba, cbb, cbc, cca, ccb.
MAPLE
with(numtheory):
a:= n-> add(n^d *mobius(n/d), d=divisors(n)):
seq(a(n), n=1..25);
MATHEMATICA
a[n_] := DivisorSum[n, n^# * MoebiusMu[n/#]& ];
Array[a, 25] (* Jean-François Alcover, Mar 24 2017, translated from Maple *)
CROSSREFS
Main diagonal of A143324.
Sequence in context: A143407 A366155 A228619 * A215929 A132596 A099669
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 21 2014
STATUS
approved