login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of length n primitive (=aperiodic or period n) n-ary words.
4

%I #12 Jan 25 2018 11:49:37

%S 1,2,24,240,3120,46410,823536,16773120,387419760,9999899910,

%T 285311670600,8916097441680,302875106592240,11112006720144330,

%U 437893890380096640,18446744069414584320,827240261886336764160,39346408075098144278664,1978419655660313589123960

%N Number of length n primitive (=aperiodic or period n) n-ary words.

%H Alois P. Heinz, <a href="/A252764/b252764.txt">Table of n, a(n) for n = 1..350</a>

%F a(n) = Sum_{d|n} n^d * mu(n/d), mu = A008683.

%F a(n) = A075147(n)*n.

%F a(n) = A074650(n,n) * n.

%F a(n) = A143325(n,n) * n.

%F a(n) = A143324(n,n).

%e a(3) = 24 because there are 24 primitive words of length 3 over 3-letter alphabet {a,b,c}: aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbc, bca, bcb, bcc, caa, cab, cac, cba, cbb, cbc, cca, ccb.

%p with(numtheory):

%p a:= n-> add(n^d *mobius(n/d), d=divisors(n)):

%p seq(a(n), n=1..25);

%t a[n_] := DivisorSum[n, n^# * MoebiusMu[n/#]& ];

%t Array[a, 25] (* _Jean-François Alcover_, Mar 24 2017, translated from Maple *)

%Y Main diagonal of A143324.

%Y Cf. A008683, A074650, A075147, A143324, A143325.

%K nonn

%O 1,2

%A _Alois P. Heinz_, Dec 21 2014