login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332183
a(n) = 8*(10^(2n+1)-1)/9 - 5*10^n.
2
3, 838, 88388, 8883888, 888838888, 88888388888, 8888883888888, 888888838888888, 88888888388888888, 8888888883888888888, 888888888838888888888, 88888888888388888888888, 8888888888883888888888888, 888888888888838888888888888, 88888888888888388888888888888, 8888888888888883888888888888888
OFFSET
0,1
FORMULA
a(n) = 8*A138148(n) + 3*10^n = A002282(2n+1) - 5*10^n.
G.f.: (3 + 505*x - 1300*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
MAPLE
A332183 := n -> 8*(10^(2*n+1)-1)/9-5*10^n;
MATHEMATICA
Array[8 (10^(2 # + 1)-1)/9 - 5*10^# &, 15, 0]
PROG
(PARI) apply( {A332183(n)=10^(n*2+1)\9*8-5*10^n}, [0..15])
(Python) def A332183(n): return 10**(n*2+1)//9*8-5*10**n
CROSSREFS
Cf. A002275 (repunits R_n = (10^n-1)/9), A002282 (8*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only).
Cf. A332113 .. A332193 (variants with different repeated digit 1, ..., 9).
Cf. A332180 .. A332189 (variants with different middle digit 0, ..., 9).
Sequence in context: A096086 A062658 A266654 * A000723 A020525 A252762
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Feb 08 2020
STATUS
approved