

A238695


Decimal expansion of Product_{n>=0} (1+1/n!).


4



7, 3, 6, 4, 3, 0, 8, 2, 7, 2, 3, 6, 7, 2, 5, 7, 2, 5, 6, 3, 7, 2, 7, 7, 2, 5, 0, 9, 6, 3, 1, 0, 5, 3, 0, 9, 5, 6, 5, 4, 2, 5, 6, 8, 3, 6, 0, 6, 8, 9, 0, 7, 6, 6, 0, 7, 9, 2, 5, 5, 4, 9, 5, 3, 6, 9, 6, 2, 3, 8, 1, 6, 4, 4, 0, 7, 6, 2, 3, 9, 8, 1, 9, 8, 1, 4, 0, 5, 0, 5, 6, 3, 7, 1, 4, 8, 1, 7, 9, 0, 3, 2, 7, 2, 4, 9, 3, 9, 5, 7, 4, 5, 6, 0, 2, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Conjectured to be irrational, transcendental and normal, none have been shown. Product is sometimes taken from n=1, leading to half the stated value.


LINKS

Lucian Craciun, Table of n, a(n) for n = 1..10000
StackExchange, Is Product_{n>=0} (1+1/n!) = e^2?, Apr 06 2013
StackExchange, How to compute Product_{n>=1} (1+1/n!)?, Aug 05 2013
Wolfram Alpha, Product_{n>=0} (1+1/n!)


EXAMPLE

7.3643082723672572563727725096310530956542568360689...


MAPLE

evalf(product(1+1/n!, n = 0..infinity), 100) # Lucian Craciun, Feb 17 2017


MATHEMATICA

RealDigits[Product[1+1/n!, {n, 0, 75}], 10, 106][[1]] (* Robert G. Wilson v, Mar 19 2014 *)


PROG

(PARI) prodinf(n=1, 1+1/gamma(n)) \\ Charles R Greathouse IV, Nov 13 2014


CROSSREFS

Cf. A072334, A217757, A282529.
Sequence in context: A246203 A091682 A073016 * A019819 A215693 A197028
Adjacent sequences: A238692 A238693 A238694 * A238696 A238697 A238698


KEYWORD

nonn,cons


AUTHOR

Frederick Reckless, Mar 03 2014


EXTENSIONS

Added more digits from bfile, so as to cover exactly three full rows of text.  Lucian Craciun, Feb 22 2017


STATUS

approved



