login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238693
Quotients connected with the Banach matchboxes problem: Sum_{i=1..prime(n)-5} 2^(i-1)*binomial(i+1,2)/prime(n) (case 2).
10
0, 1, 93, 571, 16143, 79333, 1755225, 160251339, 705725473, 57691858003, 1057609507815, 4500326662525, 80662044522801, 5995948088798691, 437230824840308493, 1820340203482736875, 130228506669621162901, 2230237339841166071433, 9214275012380069727751
OFFSET
3,3
COMMENTS
A general congruence connected with the Banach matchboxes problem is the following: for k=1,2,...,(p-1)/2, Sum_{i=1..p-2k-1} 2^(i-1)*binomial(k-1+i,k) == 0 (mod p) (p is odd prime). If k=1 (case 1), then one can prove that the corresponding quotients are 2^(prime(n)-3) - A007663(n), n >= 2.
LINKS
Vladimir Shevelev, Banach matchboxes problem and a congruence for primes, arXiv:1110.5686 [math.HO], 2011.
MATHEMATICA
Array[Sum[2^(i - 1)*Binomial[i + 1, 2]/#, {i, # - 5}] &@ Prime@ # &, 19, 3] (* Michael De Vlieger, Dec 06 2018 *)
PROG
(PARI) a(n) = sum(i=1, prime(n)-5, 2^(i-1)*binomial(i+1, 2))/prime(n); \\ Michel Marcus, Dec 06 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Mar 03 2014
EXTENSIONS
More terms from Peter J. C. Moses, Mar 03 2014
STATUS
approved