login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193248
Truncated dodecahedron, and truncated icosahedron with faces of centered polygons.
2
1, 93, 455, 1267, 2709, 4961, 8203, 12615, 18377, 25669, 34671, 45563, 58525, 73737, 91379, 111631, 134673, 160685, 189847, 222339, 258341, 298033, 341595, 389207, 441049, 497301, 558143, 623755, 694317, 770009, 851011, 937503, 1029665, 1127677, 1231719
OFFSET
1,2
COMMENTS
The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a truncated dodecahedron or truncated icosahedron. Each iteration requires the addition of (n-2) edges and (n-1) vertices to complete the centered polygon of each face. [centered triangles (A005448)and centered decagons (A062786)] & [centered hexagons (A003215) and centered pentagons (A005891)] respectively.
FORMULA
a(n) = 30*n^3 - 45*n^2 + 17*n - 1.
G.f.: x*(1+x)*(x^2 + 88*x + 1) / (x-1)^4. - R. J. Mathar, Aug 26 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(1)=1, a(2)=93, a(3)=455, a(4)=1267. - Harvey P. Dale, Aug 28 2011
E.g.f.: 1 - (1 - 2*x - 45*x^2 - 30*x^3)*exp(x). - G. C. Greubel, Nov 10 2018
MATHEMATICA
Table[30n^3-45n^2+17n-1, {n, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 93, 455, 1267}, 40] (* Harvey P. Dale, Aug 28 2011 *)
PROG
(Excel) copy and paste the formula =30 *ROW()^3-45 *ROW()^2+17*ROW()-1 fill down to desired size.
(Magma) [30*n^3-45*n^2+17*n-1: n in [1..50]]; // Vincenzo Librandi, Aug 30 2011
(PARI) vector(40, n, 30*n^3 - 45*n^2 + 17*n - 1) \\ G. C. Greubel, Nov 10 2018
CROSSREFS
Sequence in context: A237604 A045235 A116240 * A146090 A160174 A238693
KEYWORD
nonn,easy
AUTHOR
Craig Ferguson, Jul 19 2011
STATUS
approved