login
A193249
Snub dodecahedron with faces of centered polygons.
1
1, 153, 755, 2107, 4509, 8261, 13663, 21015, 30617, 42769, 57771, 75923, 97525, 122877, 152279, 186031, 224433, 267785, 316387, 370539, 430541, 496693, 569295, 648647, 735049, 828801, 930203, 1039555, 1157157, 1283309, 1418311, 1562463, 1716065, 1879417
OFFSET
1,2
COMMENTS
The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a snub dodecahedron. Each iteration requires the addition of (n-2) edges and (n-1) vertices to complete the centered polygon of each face. [centered triangles (A005448) and centered pentagons (A005891)]
FORMULA
a(n) = 50*n^3-75*n^2+27*n-1 = (2*n-1)*(25*n^2-25*n+1).
G.f.: x*(1+x)*(1+148*x+x^2)/(1-x)^4. - Bruno Berselli, Jul 22 2011
MAPLE
A193249:=n->(2*n-1)*(25*n^2-25*n+1); seq(A193249(n), n=1..50); # Wesley Ivan Hurt, Apr 30 2014
MATHEMATICA
Table[(2 n - 1) (25 n^2 - 25 n + 1), {n, 50}] (* Wesley Ivan Hurt, Apr 30 2014 *)
PROG
(Excel)
=50*ROW()^3-75*ROW()^2+27*ROW()-1 fill down to desired size.
(PARI) for(n=1, 34, print1(50*n^3-75*n^2+27*n-1", ")); \\ Bruno Berselli, Jul 21 2011
(Magma) [50*n^3-75*n^2+27*n-1: n in [1..34]]; // Bruno Berselli, Jul 22 2011
CROSSREFS
Sequence in context: A256740 A199851 A181775 * A050209 A109142 A014576
KEYWORD
nonn,easy
AUTHOR
Craig Ferguson, Jul 19 2011
STATUS
approved