login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193249
Snub dodecahedron with faces of centered polygons.
1
1, 153, 755, 2107, 4509, 8261, 13663, 21015, 30617, 42769, 57771, 75923, 97525, 122877, 152279, 186031, 224433, 267785, 316387, 370539, 430541, 496693, 569295, 648647, 735049, 828801, 930203, 1039555, 1157157, 1283309, 1418311, 1562463, 1716065, 1879417
OFFSET
1,2
COMMENTS
The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a snub dodecahedron. Each iteration requires the addition of (n-2) edges and (n-1) vertices to complete the centered polygon of each face. [centered triangles (A005448) and centered pentagons (A005891)]
FORMULA
a(n) = 50*n^3-75*n^2+27*n-1 = (2*n-1)*(25*n^2-25*n+1).
G.f.: x*(1+x)*(1+148*x+x^2)/(1-x)^4. - Bruno Berselli, Jul 22 2011
MAPLE
A193249:=n->(2*n-1)*(25*n^2-25*n+1); seq(A193249(n), n=1..50); # Wesley Ivan Hurt, Apr 30 2014
MATHEMATICA
Table[(2 n - 1) (25 n^2 - 25 n + 1), {n, 50}] (* Wesley Ivan Hurt, Apr 30 2014 *)
PROG
(Excel)
=50*ROW()^3-75*ROW()^2+27*ROW()-1 fill down to desired size.
(PARI) for(n=1, 34, print1(50*n^3-75*n^2+27*n-1", ")); \\ Bruno Berselli, Jul 21 2011
(Magma) [50*n^3-75*n^2+27*n-1: n in [1..34]]; // Bruno Berselli, Jul 22 2011
CROSSREFS
Sequence in context: A256740 A199851 A181775 * A050209 A109142 A014576
KEYWORD
nonn,easy
AUTHOR
Craig Ferguson, Jul 19 2011
STATUS
approved