login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193250
Small rhombicuboctahedron with faces of centered polygons.
3
1, 51, 245, 679, 1449, 2651, 4381, 6735, 9809, 13699, 18501, 24311, 31225, 39339, 48749, 59551, 71841, 85715, 101269, 118599, 137801, 158971, 182205, 207599, 235249, 265251, 297701, 332695, 370329, 410699, 453901, 500031, 549185, 601459, 656949, 715751
OFFSET
1,2
COMMENTS
The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a small rhombicuboctahedron. Each iteration requires the addition of (n-2) edges and (n-1) vertices to complete the centered polygon of each face. [centered triangles (A005448) and centered squares (A001844)]
FORMULA
a(n) = 16*n^3 - 24*n^2 + 10*n - 1.
G.f.: x*(1+x)*(x^2 + 46*x + 1) / (x-1)^4. - R. J. Mathar, Aug 26 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=51, a(2)=245, a(3)=679. - Harvey P. Dale, Aug 27 2011
E.g.f.: 1 + (-1 + 2*x + 24*x^2 + 16*x^3)*exp(x). - G. C. Greubel, Nov 10 2018
MATHEMATICA
Table[16n^3-24n^2+10n-1, {n, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 51, 245, 679}, 40] (* Harvey P. Dale, Aug 27 2011 *)
PROG
(Excel) copy and paste the following formula =16 *ROW()^3-24 *ROW()^2+10*ROW()-1 fill down to desired size.
(Magma) [16*n^3-24*n^2+10*n-1: n in [1..50]]; // Vincenzo Librandi, Aug 30 2011
(PARI) vector(40, n, 16*n^3-24*n^2+10*n-1) \\ G. C. Greubel, Nov 10 2018
CROSSREFS
Cf. A079414 (partial sums).
Sequence in context: A107253 A030535 A201813 * A204717 A253921 A204956
KEYWORD
nonn,easy
AUTHOR
Craig Ferguson, Jul 19 2011
STATUS
approved