OFFSET
1,2
COMMENTS
The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a great rhombicosidodecahedron. Each iteration requires the addition of (n-2) edge units and (n-1) vertices to complete the centered polygon of each face: centered squares, centered octagons and centered hexagons.
LINKS
Bruno Berselli, Table of n, a(n) for n = 1..1000
OEIS Wiki, (Centered polygons) pyramidal numbers
Wikipedia, Tetrahedral number
Wikipedia, Triangular number
Wikipedia, Centered polygonal number
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = 24*n^3 - 36*n^2 + 14*n - 1.
G.f.: x*(1+x)*(1+70*x+x^2)/(1-x)^4; a(n) = (2*n-1)*A069190(n). - Bruno Berselli, Jul 21 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=75, a(2)=365, a(3)=1015. - Harvey P. Dale, Jul 27 2011
E.g.f.: 1 + (-1 + 2*x + 36*x^2 + 24*x^3)*exp(x). - G. C. Greubel, Feb 26 2019
MATHEMATICA
Table[24n^3-36n^2+14n-1, {n, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 75, 365, 1015}, 40] (* Harvey P. Dale, Jul 27 2011 *)
PROG
(Excel) =24*ROW()^3-36*ROW()^2+14*ROW()-1
(Magma) A069190:=func<n | 12*n^2-12*n+1>; [(2*n-1)*A069190(n): n in [1..40]]; // Bruno Berselli, Jul 21 2011
(PARI) for(n=1, 40, print1(24*n^3-36*n^2+14*n-1", ")); \\ Bruno Berselli, Jul 21 2011
(Sage) [24*n^3 -36*n^2 +14*n -1 for n in (1..40)] # G. C. Greubel, Feb 26 2019
(GAP) List([1..40], n-> 24*n^3 -36*n^2 +14*n -1) # G. C. Greubel, Feb 26 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Craig Ferguson, Jul 19 2011
STATUS
approved