login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350245
Numbers p^2*q, p > q odd primes such that q divides p+1.
8
75, 363, 867, 1183, 1587, 1805, 2523, 4205, 5043, 6627, 8427, 10443, 11767, 15123, 17405, 20339, 20667, 23763, 26011, 30603, 31205, 34347, 38307, 39605, 48223, 51483, 56307, 59405, 65863, 66603, 76313, 83667, 89787, 96123, 96605, 109443, 111005, 115351, 116427
OFFSET
1,1
COMMENTS
For these terms m, there are precisely 3 groups of order m, so this is a subsequence of A055561.
The 3 groups are C_{p^2*q}, (C_p X C_p) X C_q and (C_p X C_p) : C_q, where C means cyclic groups of the stated order, the symbols X and : mean direct and semidirect products respectively.
REFERENCES
Pascal Ortiz, Exercices d'Algèbre, Collection CAPES / Agrégation, Ellipses, problème 1.35, pp. 70-74, 2004.
LINKS
EXAMPLE
75 = 5^2 * 3, 5 and 3 are odd and 3 divides 5+1 = 6, hence 75 is a term.
1183 = 13^2 * 7, 13 and 7 are odd and 7 divides 13+1 = 14, hence 1183 is another term.
MAPLE
N:= 10^6: # for terms <= N
P:= select(isprime, [seq(i, i=3..floor(sqrt(N/3)), 2)]):
g:= proc(p) local Q;
Q:= numtheory:-factorset(p+1) minus {2};
select(`<=`, map(q -> p^2*q, Q), N);
end proc:
sort(convert(`union`(op(map(g, P))), list)); # Robert Israel, Dec 28 2021
MATHEMATICA
q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; e == {1, 2} && Divisible[p[[2]] + 1, p[[1]]]]; Select[Range[1, 2*10^5, 2], q] (* Amiram Eldar, Dec 21 2021 *)
PROG
(Python)
from sympy import integer_nthroot, primerange
def aupto(limit):
aset, maxp = set(), integer_nthroot(limit**2, 3)[0]
for p in primerange(3, maxp+1):
pp = p*p
for q in primerange(3, min(p-1, limit//pp)+1):
if (p+1)%q == 0:
aset.add(pp*q)
return sorted(aset)
print(aupto(120000)) # Michael S. Branicky, Dec 21 2021
CROSSREFS
Intersection of A054753 and A055561.
Other subsequences of A054753 linked with order of groups: A079704, A143928, A349495, A350115.
Sequence in context: A226741 A223078 A055561 * A193252 A223452 A015223
KEYWORD
nonn
AUTHOR
Bernard Schott, Dec 21 2021
EXTENSIONS
More terms from Amiram Eldar, Dec 21 2021
STATUS
approved