login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055561 Numbers n such that there are precisely 3 groups of order n. 25
75, 363, 609, 867, 1183, 1265, 1275, 1491, 1587, 1725, 1805, 2067, 2175, 2373, 2523, 3045, 3525, 3685, 3795, 3975, 4137, 4205, 4335, 4425, 4895, 5019, 5043, 5109, 5901, 5915, 6171, 6225, 6627, 6675, 6699, 7935, 8025, 8427, 8475, 8855, 9429, 9537, 10275 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Let gnu(n) (= A000001(n)) denote the "group number of n" defined in A000001 or in (J. H. Conway, Heiko Dietrich and E. A. O'Brien, 2008), then the sequence n -> gnu(a(n)) -> gnu(gnu(a(n))) consists of 1's. - Muniru A Asiru, Nov 19 2017

LINKS

Gheorghe Coserea, Table of n, a(n) for n = 1..234567, terms 1..206 from Muniru A Asiru.

H.-U. Besche, B. Eick and E. A. O'Brien, The Small Groups Library

H.-U. Besche, B. Eick and E. A. O'Brien, A Millennium Project: Constructing Small Groups, Internat. J. Algebra and Computation, 12 (2002), 623-644.

J. H. Conway, Heiko Dietrich and E. A. O'Brien, Counting groups: gnus, moas and other exotica, Math. Intell., Vol. 30, No. 2, Spring 2008.

Gordon Royle, Numbers of Small Groups

Index entries for sequences related to groups

EXAMPLE

For n = 75, the 3 groups of order 75 are C75, (C5 x C5) : C3, C15 x C5 and for n = 363 the 3 groups of order 363 are C363, (C11 x C11) : C3, C33 x C11 where C is the Cyclic group of the stated order. The symbols x and : mean direct and semi-direct products respectively. - Muniru A Asiru, Oct 24 2017

PROG

(PARI)

is(n) = {

  my(p = gcd(n, eulerphi(n)), f, g);

  if (isprime(p), return(n % p^2 == 0 && isprime(gcd(p+1, n))));

  if (omega(p) != 2 || !issquarefree(n), return(0));

  f = factor(n); g = factor(p);

  1 == g[2, 1] % g[1, 1] &&

  1 == sum(k=1, matsize(f)[1], f[k, 1] % g[1, 1] == 1) &&

  1 == sum(k=1, matsize(f)[1], f[k, 1] % g[2, 1] == 1);

};

seq(N) = {

  my(a = vector(N), k=0, n=1);

  while(k < N, if(is(n), a[k++]=n); n++); a;

};

seq(43) \\ Gheorghe Coserea, Dec 12 2017

CROSSREFS

Cf. A000001, A003277, A054395, A054396, A054397.

Sequence in context: A158765 A226741 A223078 * A193252 A223452 A015223

Adjacent sequences:  A055558 A055559 A055560 * A055562 A055563 A055564

KEYWORD

nonn

AUTHOR

Christian G. Bower, May 25 2000; Nov 12 2003; Feb 17 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 07:44 EST 2019. Contains 329914 sequences. (Running on oeis4.)