|
|
A294156
|
|
Numbers m such that there are precisely 15 groups of order m.
|
|
20
|
|
|
24, 54, 81, 84, 136, 220, 228, 250, 260, 328, 340, 372, 513, 516, 580, 584, 620, 625, 686, 712, 740, 776, 804, 884, 891, 904, 948, 999, 1060, 1096, 1236, 1375, 1377, 1420, 1460, 1508, 1524, 1544, 1668, 1780, 1812, 1863, 1864, 1911, 1924, 1928, 1940, 1956, 1971, 1972, 2056, 2132, 2180
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
For m = 24, the 15 groups of order 24 are C3 : C8, C24, SL(2,3), C3 : Q8, C4 x S3, D24, C2 x (C3 : C4), (C6 x C2) : C2, C12 x C2, C3 x D8, C3 x Q8, S4, C2 x A4, C2 x C2 x S3, C6 x C2 x C2 and for n = 54 the 15 groups of order 54 are D54, C54, C3 x D18, C9 x S3, ((C3 x C3) : C3) : C2, (C9 : C3) : C2, (C9 x C3) : C2, ((C3 x C3) : C3) : C2, C18 x C3, C2 x ((C3 x C3) : C3), C2 x (C9 : C3), C3 x C3 x S3, C3 x ((C3 x C3) : C2), (C3 x C3 x C3) : C2, C6 x C3 x C3 where C, D, Q, S, A and SL mean Cyclic, Dihedral, Quaternion, Symmetric, Alternating and Special Linear group. The symbols x and : mean direct and semi-direct products respectively.
|
|
MATHEMATICA
|
|
|
PROG
|
(GAP) A294156 := Filtered([1..2015], n -> NumberSmallGroups(n) = 15);
|
|
CROSSREFS
|
Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), this sequence (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|