login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108215
4-almost primes equal to the product of two successive semiprimes.
2
24, 54, 90, 140, 210, 315, 462, 550, 650, 858, 1122, 1190, 1330, 1482, 1794, 2254, 2499, 2805, 3135, 3306, 3596, 4030, 4485, 5106, 5698, 6314, 6970, 7310, 7482, 7917, 8463, 8742, 8930, 10070, 11766, 12765, 13570, 14042, 14399, 14762, 15006, 15867
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 4*6 = 24 and a(2) = 6*9 = 54 because 4, 6 and 9 are the first three successive semiprimes.
MATHEMATICA
Select[Times@@@Partition[Select[Range[200], PrimeOmega[#]==2&], 2, 1], PrimeOmega[#]==4&] (* Harvey P. Dale, Nov 17 2011 *)
PROG
(PARI) sp=4; for(sq=6, 300, if(bigomega(sq)==2, print1(sp*sq, ", "); sp=sq)) \\ Rick L. Shepherd
(PARI) list(lim)=my(v=List(), s=sqrtint(lim\1), u=v); forprime(p=2, s\2, forprime(q=2, min(p, s\p), listput(v, p*q))); v=Set(v); for(i=2, #v, listput(u, v[i-1]*v[i])); for(k=s+1, lim\v[#v], if(bigomega(k)==2, listput(u, v[#v]*k); break)); Set(u) \\ Charles R Greathouse IV, Feb 02 2017
CROSSREFS
Sequence in context: A259023 A301575 A294156 * A322609 A234238 A228876
KEYWORD
easy,nonn
AUTHOR
Giovanni Teofilatto, Jun 16 2005
EXTENSIONS
More terms from Rick L. Shepherd, Jun 16 2005
STATUS
approved