The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A108217 a(0) = 1, a(1) = 1, a(n) = n! + (n-2)! for n >= 2. 4
 1, 1, 3, 7, 26, 126, 744, 5160, 41040, 367920, 3669120, 40279680, 482630400, 6266937600, 87657292800, 1313901388800, 21009968179200, 356995102464000, 6423296495616000, 122000787836928000, 2439304381882368000, 51212587272118272000, 1126433629785784320000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS In factorial base representation (A007623) the terms of this sequence look as: 1, 1, 11, 101, 1010, 10100, 101000, ... From a(3)=7 onward each term begins always with "101", which is then followed by n-3 zeros. - Antti Karttunen, Sep 23 2016 LINKS FORMULA For n >= 2, a(n) = A002061(n) * (n-2)! - Antti Karttunen, Sep 23 2016 E.g.f.: x + (1-x)*log(1-x) + 1/(1-x). - Andrew Howroyd, May 09 2021 EXAMPLE a(6) = 6!+4! = 720+24 = 744. MAPLE a:= n-> `if`(n<2, 1, n!+(n-2)!): seq(a(n), n=0..30); MATHEMATICA Table[If[n<2, 1, n!+(n-2)!], {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, May 19 2011 *) Join[{1, 1}, #[]+#[]&/@Partition[Range[0, 20]!, 3, 1]] (* Harvey P. Dale, Nov 19 2015 *) PROG (Scheme) (define (A108217 n) (if (<= n 1) 1 (* (A002061 n) (A000142 (- n 2))))) ;; Antti Karttunen, Sep 23 2016 CROSSREFS Cf. A000142, A002061, A007623, A001048, A030495. Row 5 of A276955, from term a(3)=7 onward. Sequence in context: A057005 A158561 A252786 * A120120 A126472 A019059 Adjacent sequences:  A108214 A108215 A108216 * A108218 A108219 A108220 KEYWORD easy,nonn AUTHOR Miklos Kristof, following a suggestion from Peter Boros, (borospet(AT)freemail.hu), Jun 16 2005 EXTENSIONS Corrected by Georg Fischer, May 09 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 2 14:26 EDT 2022. Contains 355007 sequences. (Running on oeis4.)