|
|
A108217
|
|
a(n) = n! + (n-2)!.
|
|
4
|
|
|
1, 1, 3, 7, 26, 126, 744, 5160, 41040, 367920, 3669120, 40279680, 482630400, 6266937600, 87657292800, 1313901388800, 21009968179200, 356995102464000, 6423296495616000, 122000787836928000, 2439304381882368000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
In factorial base representation (A007623) the terms of this sequence look as: 1, 1, 11, 101, 1010, 10100, 101000, ... From a(3)=7 onward each term begins always with "101", which is then followed by n-3 zeros. - Antti Karttunen, Sep 23 2016
|
|
LINKS
|
Table of n, a(n) for n=0..20.
Index entries for sequences related to factorial base representation
|
|
FORMULA
|
E.g.f. = 1/(1-x)+2/(1-x)^3
For n >= 2, a(n) = A002061(n) * (n-2)! - Antti Karttunen, Sep 23 2016
|
|
EXAMPLE
|
a(4) = 4!+6! = 24+720 = 744
|
|
MAPLE
|
seq(n!+(n+2)!, n=0..30);
|
|
MATHEMATICA
|
Table[If[n<2, 1, n!+(n-2)!], {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, May 19 2011 *)
Join[{1, 1}, #[[1]]+#[[3]]&/@Partition[Range[0, 20]!, 3, 1]] (* Harvey P. Dale, Nov 19 2015 *)
|
|
PROG
|
(Scheme) (define (A108217 n) (if (<= n 1) 1 (* (A002061 n) (A000142 (- n 2))))) ;; Antti Karttunen, Sep 23 2016
|
|
CROSSREFS
|
Cf. A000142, A002061, A007623, A001048, A030495.
Row 5 of A276955, from term a(3)=7 onward.
Sequence in context: A057005 A158561 A252786 * A120120 A126472 A019059
Adjacent sequences: A108214 A108215 A108216 * A108218 A108219 A108220
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Miklos Kristof, following a suggestion from Peter Boros, (borospet(AT)freemail.hu), Jun 16 2005
|
|
STATUS
|
approved
|
|
|
|