This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001048 a(n) = n! + (n-1)!. (Formerly M0890 N0337) 37
 2, 3, 8, 30, 144, 840, 5760, 45360, 403200, 3991680, 43545600, 518918400, 6706022400, 93405312000, 1394852659200, 22230464256000, 376610217984000, 6758061133824000, 128047474114560000, 2554547108585472000, 53523844179886080000, 1175091669949317120000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Number of {12, 12*, 1*2, 21, 21*}-avoiding signed permutations in the hyperoctahedral group. a(n) is the hook product of the shape (n, 1). - Emeric Deutsch, May 13 2004 From Jaume Oliver Lafont, Dec 01 2009: (Start) (1+(x-1)*exp(x))/x = Sum_{k >= 1} x^k/a(k). Setting x = 1 yields Sum_{k >= 1} 1/a(k) = 1. [Jolley eq 302] (End) For n >= 2, a(n) is the size of the largest conjugacy class of the symmetric group on n + 1 letters. Equivalently, the maximum entry in each row of A036039. - Geoffrey Critzer, May 19 2013 In factorial base representation (A007623) the terms are written as: 10, 11, 110, 1100, 11000, 110000, ... From a(2) = 3 = "11" onward each term begins always with two 1's, followed by n-2 zeros. - Antti Karttunen, Sep 24 2016 e is approximately A001048(n)/A000255(n-1) for large n. - Dale Gerdemann, Jul 26 2019 REFERENCES Archimedeans Problems Drive, Eureka, 24 (1961), 20. L. B. W. Jolley, Summation of Series, Dover (1961). N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n=1..100 B. Balof, H. Jenne, Tilings, Continued Fractions, Derangements, Scramblings, and e, Journal of Integer Sequences, 17 (2014), #14.2.7. E. Biondi, L. Divieti, G. Guardabassi, Counting paths, circuits, chains and cycles in graphs: A unified approach, Canad. J. Math. 22 1970 22-35. R. K. Guy, Letters to N. J. A. Sloane, June-August 1968 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 97 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 641 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 101 H. K. Jenne, Proofs you can count on, Honors Thesis, Math. Dept., Whitman College, 2013. T. Mansour and J. West, Avoiding 2-letter signed patterns, arXiv:math/0207204 [math.CO], 2002. Eric Weisstein's World of Mathematics, Uniform Sum Distribution FORMULA a(n) = (n+1)*(n-1)!. E.g.f.: x/(1-x) - log(1-x). - Ralf Stephan, Apr 11 2004 The sequence 1, 3, 8, ... has g.f. (1+x-x^2)/(1-x)^2 and a(n) = n!(n + 2 - 0^n) = n!A065475(n) (offset 0). - Paul Barry, May 14 2004 a(n) = (n+1)!/n. - Claude Lenormand (claude.lenormand(AT)free.fr), Aug 24 2003 Factorial expansion of 1: 1 = sum_{n > 0} 1/a(n) [Jolley eq 302]. - Claude Lenormand (claude.lenormand(AT)free.fr), Aug 24 2003 a(1) = 2, a(2) = 3, a(n) = (n^2 - n - 2)*a(n-2) for n >= 3. - Jaume Oliver Lafont, Dec 01 2009 a(n) = ((n+2)A052649(n) - A052649(n+1))/2. - Gary Detlefs, Dec 16 2009 G.f.: U(0) where U(k) = 1 + (k+1)/(1 - x/(x + 1/U(k+1))) ; (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 25 2012 G.f.: 2*(1+x)/x/G(0) - 1/x, where G(k)= 1 + 1/(1 - x*(2*k+2)/(x*(2*k+2) - 1 + x*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013 a(n) = (n-1)*a(n-1) + (n-1)!. - Bruno Berselli, Feb 22 2017 a(1)=2, a(2)=3, a(n) = (n-1)*a(n-1) + (n-2)*a(n-2). - Dale Gerdemann, Jul 26 2019 a(n) = 2*A000255(n-1) + A096654(n-2). - Dale Gerdemann, Jul 26 2019 MATHEMATICA Table[n! + (n + 1)!, {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Apr 14 2011 *) Total/@Partition[Range[0, 20]!, 2, 1] (* Harvey P. Dale, Nov 29 2013 *) PROG (MAGMA) [Factorial(n)+Factorial(n+1): n in [0..30]]; // Vincenzo Librandi, Aug 08 2014 (PARI) a(n)=denominator(polcoeff((x-1)*exp(x+x*O(x^(n+1))), n+1)); \\ Gerry Martens, Aug 12 2015 (PARI) vector(30, n, (n+1)*(n-1)!) \\ Michel Marcus, Aug 12 2015 CROSSREFS Apart from initial terms, same as A059171. Equals the square root of the first right hand column of A162990. - Johannes W. Meijer, Jul 21 2009 From a(2)=3 onward the second topmost row of arrays A276588 and A276955. Cf. sequences with formula (n + k)*n! listed in A282466. Sequence in context: A054104 A053556 A301737 * A141520 A072042 A160586 Adjacent sequences:  A001045 A001046 A001047 * A001049 A001050 A001051 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from James A. Sellers, Sep 19 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 21:28 EDT 2019. Contains 328244 sequences. (Running on oeis4.)