The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001048 a(n) = n! + (n-1)!. (Formerly M0890 N0337) 41
 2, 3, 8, 30, 144, 840, 5760, 45360, 403200, 3991680, 43545600, 518918400, 6706022400, 93405312000, 1394852659200, 22230464256000, 376610217984000, 6758061133824000, 128047474114560000, 2554547108585472000, 53523844179886080000, 1175091669949317120000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Number of {12, 12*, 1*2, 21, 21*}-avoiding signed permutations in the hyperoctahedral group. a(n) is the hook product of the shape (n, 1). - Emeric Deutsch, May 13 2004 From Jaume Oliver Lafont, Dec 01 2009: (Start) (1+(x-1)*exp(x))/x = Sum_{k >= 1} x^k/a(k). Setting x = 1 yields Sum_{k >= 1} 1/a(k) = 1. [Jolley eq 302] (End) For n >= 2, a(n) is the size of the largest conjugacy class of the symmetric group on n + 1 letters. Equivalently, the maximum entry in each row of A036039. - Geoffrey Critzer, May 19 2013 In factorial base representation (A007623) the terms are written as: 10, 11, 110, 1100, 11000, 110000, ... From a(2) = 3 = "11" onward each term begins always with two 1's, followed by n-2 zeros. - Antti Karttunen, Sep 24 2016 e is approximately a(n)/A000255(n-1) for large n. - Dale Gerdemann, Jul 26 2019 a(n) is the number of permutations of [n+1] in which all the elements of [n] are cycle-mates, that is, 1,..,n are all in the same cycle. This result is readily shown after noting that the elements of [n] can be members of a n-cycle or an (n+1)-cycle. Hence a(n)=(n-1)!+n!. See an example below. - Dennis P. Walsh, May 24 2020 REFERENCES L. B. W. Jolley, Summation of Series, Dover, 1961. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n=1..100 Barry Balof and Helen Jenne, Tilings, Continued Fractions, Derangements, Scramblings, and e, Journal of Integer Sequences, Vol. 17 (2014), #14.2.7. E. Biondi, L. Divieti, and G. Guardabassi, Counting paths, circuits, chains and cycles in graphs: A unified approach, Canad. J. Math., Vol. 22, No. 1 (1970), pp. 22-35. Richard K. Guy, Letters to N. J. A. Sloane, June-August 1968. INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 97. INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 641. INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 101. Helen K. Jenne, Proofs you can count on, Honors Thesis, Math. Dept., Whitman College, 2013. B. D. Josephson and J. M. Boardman, Problems Drive 1961, Eureka, The Journal of the Archimedeans, Vol. 24 (1961), p. 20; entire volume. T. Mansour and J. West, Avoiding 2-letter signed patterns, arXiv:math/0207204 [math.CO], 2002. Eric Weisstein's World of Mathematics, Uniform Sum Distribution. FORMULA a(n) = (n+1)*(n-1)!. E.g.f.: x/(1-x) - log(1-x). - Ralf Stephan, Apr 11 2004 The sequence 1, 3, 8, ... has g.f. (1+x-x^2)/(1-x)^2 and a(n) = n!(n + 2 - 0^n) = n!A065475(n) (offset 0). - Paul Barry, May 14 2004 a(n) = (n+1)!/n. - Claude Lenormand (claude.lenormand(AT)free.fr), Aug 24 2003 Factorial expansion of 1: 1 = sum_{n > 0} 1/a(n) [Jolley eq 302]. - Claude Lenormand (claude.lenormand(AT)free.fr), Aug 24 2003 a(1) = 2, a(2) = 3, D-finite recurrence a(n) = (n^2 - n - 2)*a(n-2) for n >= 3. - Jaume Oliver Lafont, Dec 01 2009 a(n) = ((n+2)A052649(n) - A052649(n+1))/2. - Gary Detlefs, Dec 16 2009 G.f.: U(0) where U(k) = 1 + (k+1)/(1 - x/(x + 1/U(k+1))) ; (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 25 2012 G.f.: 2*(1+x)/x/G(0) - 1/x, where G(k)= 1 + 1/(1 - x*(2*k+2)/(x*(2*k+2) - 1 + x*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013 a(n) = (n-1)*a(n-1) + (n-1)!. - Bruno Berselli, Feb 22 2017 a(1)=2, a(2)=3, D-finite recurrence a(n) = (n-1)*a(n-1) + (n-2)*a(n-2). - Dale Gerdemann, Jul 26 2019 a(n) = 2*A000255(n-1) + A096654(n-2). - Dale Gerdemann, Jul 26 2019 Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - 2/e (A334397). - Amiram Eldar, Jan 13 2021 EXAMPLE For n=3, a(3) counts the 8 permutations of [4] with 1,2, and 3 all in the same cycle, namely, (1 2 3)(4), (1 3 2)(4), (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 2 4 3), (1 4 2 3), and (1 4 3 2). - Dennis P. Walsh, May 24 2020 MAPLE seq(n!+(n-1)!, n=1..25); MATHEMATICA Table[n! + (n + 1)!, {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Apr 14 2011 *) Total/@Partition[Range[0, 20]!, 2, 1] (* Harvey P. Dale, Nov 29 2013 *) PROG (Magma) [Factorial(n)+Factorial(n+1): n in [0..30]]; // Vincenzo Librandi, Aug 08 2014 (PARI) a(n)=denominator(polcoeff((x-1)*exp(x+x*O(x^(n+1))), n+1)); \\ Gerry Martens, Aug 12 2015 (PARI) vector(30, n, (n+1)*(n-1)!) \\ Michel Marcus, Aug 12 2015 CROSSREFS Apart from initial terms, same as A059171. Equals the square root of the first right hand column of A162990. - Johannes W. Meijer, Jul 21 2009 From a(2)=3 onward the second topmost row of arrays A276588 and A276955. Cf. sequences with formula (n + k)*n! listed in A282466, A334397. Sequence in context: A054104 A053556 A301737 * A141520 A072042 A160586 Adjacent sequences:  A001045 A001046 A001047 * A001049 A001050 A001051 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from James A. Sellers, Sep 19 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 04:03 EST 2022. Contains 358353 sequences. (Running on oeis4.)