login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276588 Square array A(row,col) = Sum_{k=0..row} binomial(row,k)*(1+col+k)!, read by descending antidiagonals as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ... 8
1, 2, 3, 6, 8, 11, 24, 30, 38, 49, 120, 144, 174, 212, 261, 720, 840, 984, 1158, 1370, 1631, 5040, 5760, 6600, 7584, 8742, 10112, 11743, 40320, 45360, 51120, 57720, 65304, 74046, 84158, 95901, 362880, 403200, 448560, 499680, 557400, 622704, 696750, 780908, 876809, 3628800, 3991680, 4394880, 4843440, 5343120, 5900520, 6523224, 7219974, 8000882, 8877691 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..1274; the first 50 antidiagonals of array

Index entries for sequences related to factorial base representation

Index entries for triangles and arrays related to Pascal's triangle

FORMULA

A(row,col) = Sum_{k=0..row} binomial(row,k)*A000142(1+col+k).

A(row,col) = A276075(A066117(row+1,col+1)).

EXAMPLE

The top left corner of the array:

     1,     2,     6,     24,     120,      720,      5040,      40320

     3,     8,    30,    144,     840,     5760,     45360,     403200

    11,    38,   174,    984,    6600,    51120,    448560,    4394880

    49,   212,  1158,   7584,   57720,   499680,   4843440,   51932160

   261,  1370,  8742,  65304,  557400,  5343120,  56775600,  661933440

  1631, 10112, 74046, 622704, 5900520, 62118720, 718709040, 9059339520

MATHEMATICA

T[r_, c_]:=Sum[Binomial[r, k](1 + c + k)!, {k, 0, r}]; Table[T[c, r - c], {r, 0, 10}, {c, 0, r}] // Flatten (* Indranil Ghosh, Apr 11 2017 *)

PROG

(Scheme)

(define (A276588 n) (A276588bi (A002262 n) (A025581 n)))

(define (A276588bi row col) (A276075 (A066117bi (+ 1 row) (+ 1 col)))) ;; Code for A066117bi given in A066117, and for A276075 under the respective entry.

(PARI) T(r, c) = sum(k=0, r, binomial(r, k)*(1 + c + k)!);

for(r=0, 10, for(c=0, r, print1(T(c, r - c), ", "); ); print(); ) \\ Indranil Ghosh, Apr 11 2017

(Python)

from sympy import binomial, factorial

def T(r, c): return sum([binomial(r, k) * factorial(1 + c + k) for k in range(r + 1)])

for r in range(11): print [T(c, r - c) for c in range(r + 1)] # Indranil Ghosh, Apr 11 2017

CROSSREFS

Transpose: A276589.

Topmost row (row 0): A000142, Row 1: A001048 (without its initial 2), Row 2: A001344 (from a(1) = 11 onward), Row 3: A001345 (from a(1) = 49 onward), Row 4: A001346 (from a(1) = 261 onward), Row 5: A001347 (from a(1) = 1631 onward).

Leftmost column (column 0): A001339, Column 1: A001340, Columns 2-3: A001341 & A001342 (apparently).

Cf. A276075.

Cf. also arrays A066117, A276586, A099884, A255483.

Sequence in context: A242340 A033766 A129340 * A275951 A276586 A080598

Adjacent sequences:  A276585 A276586 A276587 * A276589 A276590 A276591

KEYWORD

nonn,tabl

AUTHOR

Antti Karttunen, Sep 19 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 18:48 EDT 2020. Contains 334854 sequences. (Running on oeis4.)