login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276075
a(1) = 0, a(n) = (e1*i1! + e2*i2! + ... + ez*iz!) for n = prime(i1)^e1 * prime(i2)^e2 * ... * prime(iz)^ez, where prime(k) is the k-th prime, A000040(k).
24
0, 1, 2, 2, 6, 3, 24, 3, 4, 7, 120, 4, 720, 25, 8, 4, 5040, 5, 40320, 8, 26, 121, 362880, 5, 12, 721, 6, 26, 3628800, 9, 39916800, 5, 122, 5041, 30, 6, 479001600, 40321, 722, 9, 6227020800, 27, 87178291200, 122, 10, 362881, 1307674368000, 6, 48, 13, 5042, 722, 20922789888000, 7, 126, 27, 40322, 3628801, 355687428096000, 10, 6402373705728000, 39916801, 28, 6, 726, 123
OFFSET
1,3
COMMENTS
Additive with a(p^e) = e * (PrimePi(p)!), where PrimePi(n) = A000720(n).
a(3181) has 1001 decimal digits. - Michael De Vlieger, Dec 24 2017
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..3180 (First 120 terms from Antti Karttunen).
FORMULA
a(1) = 0; for n > 1, a(n) = a(A028234(n)) + (A067029(n) * A000142(A055396(n))).
Other identities.
For all n >= 0:
a(A276076(n)) = n.
a(A002110(n)) = A007489(n).
a(A019565(n)) = A059590(n).
a(A206296(n)) = A276080(n).
a(A260443(n)) = A276081(n).
For all n >= 1:
a(A000040(n)) = n! = A000142(n).
a(A076954(n-1)) = A033312(n).
MATHEMATICA
Array[If[# == 1, 0, Total[FactorInteger[#] /. {p_, e_} /; p > 1 :> e PrimePi[p]!]] &, 66] (* Michael De Vlieger, Dec 24 2017 *)
PROG
(Scheme, with memoization-macro definec)
(definec (A276075 n) (cond ((= 1 n) (- n 1)) (else (+ (* (A067029 n) (A000142 (A055396 n))) (A276075 (A028234 n))))))
(Python)
from sympy import factorint, factorial as f, primepi
def a(n):
F=factorint(n)
return 0 if n==1 else sum(F[i]*f(primepi(i)) for i in F)
print([a(n) for n in range(1, 121)]) # Indranil Ghosh, Jun 21 2017
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 18 2016
STATUS
approved