login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206296
Prime factorization representation of Fibonacci polynomials: a(0) = 1, a(1) = 2, and for n > 1, a(n) = A003961(a(n-1)) * a(n-2).
20
1, 2, 3, 10, 63, 2750, 842751, 85558343750, 2098355820117528699, 769999781728184386440152910156250, 2359414683424785920146467280333749864720543920418139851
OFFSET
0,2
COMMENTS
These are numbers matched to the Fibonacci polynomials according to the scheme explained in A206284 (see also A104244). In this case, the exponent of the k-th prime p_k in the prime factorization of a(n) indicates the coefficient of term x^(k-1) in the n-th Fibonacci polynomial. See the examples.
LINKS
Eric Weisstein's World of Mathematics, Fibonacci polynomial
FORMULA
From Antti Karttunen, Jul 29 2015: (Start)
a(0) = 1, a(1) = 2, and for n >= 2, a(n) = A003961(a(n-1)) * a(n-2).
Other identities. For all n >= 0:
A001222(a(n)) = A000045(n). [When each polynomial is evaluated at x=1.]
A048675(a(n)) = A000129(n). [at x=2.]
A090880(a(n)) = A006190(n). [at x=3.]
(End)
EXAMPLE
n a(n) prime factorization Fibonacci polynomial
------------------------------------------------------------
0 1 (empty) F_0(x) = 0
1 2 p_1 F_1(x) = 1
2 3 p_2 F_2(x) = x
3 10 p_3 * p_1 F_3(x) = x^2 + 1
4 63 p_4 * p_2^2 F_4(x) = x^3 + 2x
5 2750 p_5 * p_3^3 * p_1 F_5(x) = x^4 + 3x^2 + 1
6 842751 p_6 * p_4^4 * p_2^3 F_6(x) = x^5 + 4x^3 + 3x
MATHEMATICA
c[n_] := CoefficientList[Fibonacci[n, x], x]
f[n_] := Product[Prime[k]^c[n][[k]], {k, 1, Length[c[n]]}]
Table[f[n], {n, 1, 11}] (* A206296 *)
PROG
(Scheme, with memoization-macro definec)
(definec (A206296 n) (cond ((<= n 1) (+ 1 n)) (else (* (A003961 (A206296 (- n 1))) (A206296 (- n 2))))))
(Python)
from sympy import factorint, prime, primepi
from operator import mul
def a003961(n):
F=factorint(n)
return 1 if n==1 else reduce(mul, [prime(primepi(i) + 1)**F[i] for i in F])
l=[1, 2]
for n in range(2, 11):
l.append(a003961(l[n - 1])*l[n - 2])
print(l) # Indranil Ghosh, Jun 21 2017
CROSSREFS
Other such mappings:
polynomial sequence integer sequence
-----------------------------------------
x^n A000040
(x+1)^n A007188
n*x^(n-1) A062457
(1-x^n)/(1-x) A002110
n + (n-1)x + ... +x^n A006939
Stern polynomials A260443
Sequence in context: A093856 A173097 A088221 * A124923 A291935 A088222
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 05 2012
EXTENSIONS
a(0) = 1 prepended (to indicate 0-polynomial), Name changed, Comments and Example section rewritten by Antti Karttunen, Jul 29 2015
STATUS
approved