login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206299
McKay-Thompson series of class 24C for the Monster group with a(0) = -1.
2
1, -1, 0, 2, -1, -2, 4, -2, -2, 6, -4, -4, 10, -6, -8, 16, -9, -10, 24, -14, -16, 36, -20, -24, 53, -30, -32, 76, -43, -48, 108, -60, -68, 150, -84, -92, 206, -114, -128, 280, -155, -172, 376, -208, -228, 504, -276, -304, 668, -366, -400, 878, -480, -524, 1148
OFFSET
-1,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (1/q) * chi(q) * chi(q^12)^3 / (chi(q^3)^3 * chi(q^4)) in powers of q where chi() is a Ramanujan theta function.
Expansion of c(q^2)*c(q^4)/(c(q)*c(q^8)) in powers of q where c() is a cubic AGM theta function.
Euler transform of period 24 sequence [ -1, 0, 2, 1, -1, 0, -1, 0, 2, 0, -1, -2, -1, 0, 2, 0, -1, 0, -1, 1, 2, 0, -1, 0, ...].
a(n) = A058573(n) unless n = 0.
Expansion of eta(q)*eta(q^6)^3*eta(q^8)*eta(q^12)^3/(eta(q^2)*eta(q^3)^3* eta(q^4)*eta(q^24)^3) in powers of q. - G. C. Greubel, Jun 20 2018
EXAMPLE
1/q - 1 + 2*q^2 - q^3 - 2*q^4 + 4*q^5 - 2*q^6 - 2*q^7 + 6*q^8 - 4*q^9 + ...
MATHEMATICA
QP = QPochhammer; s = QP[q]*QP[q^6]^3*QP[q^8]*(QP[q^12]^3/(QP[q^2]* QP[q^3]^3*QP[q^4]*QP[q^24]^3)) + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 16 2015, adapted from PARI *)
PROG
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A)^3 * eta(x^8 + A) * eta(x^12 + A)^3 / (eta(x^2 + A) * eta(x^3 + A)^3 * eta(x^4 +A ) * eta(x^24 + A)^3), n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Feb 05 2012
STATUS
approved