The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206300 Expand the real root of y^3 - y + x in powers of x, then multiply coefficient of x^n by -4^n to get integers. 3
 -1, 2, 6, 32, 210, 1536, 12012, 98304, 831402, 7208960, 63740820, 572522496, 5209363380, 47915728896, 444799488600, 4161823309824, 39209074920090, 371626340253696, 3541117629057540 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Also coefficients of the series S(u) for which (-sqrt(3u))*S converges to the larger of the two real roots of x^3 - 3ux + 4u for u >= 4. Specifically, S(u)=Sum_{n>=0} a(n)/(27*u)^(n/2). - Dixon J. Jones, Jun 24 2021 REFERENCES G. E. Andrews, Number Theory, 1971, Dover Publications New York, pp. 41 - 43. LINKS FORMULA G.f.: -(12*x)/(2*sin(arcsin(216*x^2-1)/3)+1). - Vladimir Kruchinin, Oct 30 2014 G.f.: -x/Revert((x*sqrt(1-4*x))). - Thomas Baruchel, Jul 02 2018 G.f.: - (1/x) * Revert( x*sqrt(c(4*x)) ), where c(x) =  (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108 and sqrt(c(4*x)) is the g.f. of A048990. - Peter Bala, Mar 05 2020 From Dixon J. Jones, Jun 24 2021: (Start) a(n) = 2*A085614(n) for n>=1. a(n) = 2^(2*n - 1) Gamma((3*n - 1)/2)/(Gamma((n + 1)/2)*n!). a(n) = (2^(2*n - 1)*((n + 1)/2)_(n-1))/n!, where (x)_k is the Pochhammer symbol. (End) MATHEMATICA p[x_] = y /. Solve[y^3 - y + x == 0, y][[1]] b = Table[-4^n*FullSimplify[ExpandAll[SeriesCoefficient[ Series[p[x], {x, 0, 30}], n]]], {n, 0, 30}] (* From Dixon J. Jones, Jun 24 2021: (Start) *) Clear[a]; a=Table[2^(2n - 1) Gamma[(3n - 1)/2]/(Gamma[(n + 1)/2]n!), {n, 0, 20}] Clear[a]; a=Table[2^(2n - 1) Pochhammer[(n + 1)/2, (n-1)]/n!, {n, 0, 20}] (* End *) PROG (PARI) -x/serreverse((x*sqrt(1-4*x))) \\ Thomas Baruchel, Jul 02 2018 CROSSREFS Cf. A000108, A048990, A224884 (signed version). Cf. A085614. Sequence in context: A318976 A109572 A011820 * A224884 A321086 A111550 Adjacent sequences:  A206297 A206298 A206299 * A206301 A206302 A206303 KEYWORD sign,easy AUTHOR Roger L. Bagula, Feb 05 2012 EXTENSIONS Edited by N. J. A. Sloane, Feb 09 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 11:16 EDT 2022. Contains 353871 sequences. (Running on oeis4.)