login
A318976
Expansion of e.g.f. Product_{k>=1} ((1 + x^k)/(1 - x^k))^(phi(k)/k), where phi is the Euler totient function A000010.
5
1, 2, 6, 32, 196, 1512, 13384, 135872, 1545744, 19441952, 268386784, 4018603008, 65021744704, 1127284876928, 20880206388864, 410781080941568, 8561002328678656, 188224613741879808, 4355496092560324096, 105752112730661347328, 2688539359466319184896
OFFSET
0,2
COMMENTS
Convolution of A088009 and A000262.
LINKS
FORMULA
E.g.f.: exp(x*(2 + x)/(1 - x^2)).
a(n) ~ 2^(-3/4) * 3^(1/4) * exp(sqrt(6*n) - n - 1/2) * n^(n - 1/4).
MATHEMATICA
nmax = 20; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(EulerPhi[k]/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
nmax = 20; CoefficientList[Series[E^(x*(2 + x)/(1 - x^2)), {x, 0, nmax}], x] * Range[0, nmax]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Sep 06 2018
STATUS
approved