login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224884
Expansion of x / Series_Reversion(x*sqrt(1 + 4*x)).
4
1, 2, -6, 32, -210, 1536, -12012, 98304, -831402, 7208960, -63740820, 572522496, -5209363380, 47915728896, -444799488600, 4161823309824, -39209074920090, 371626340253696, -3541117629057540, 33902753847705600, -325969196485349340, 3146175557067079680, -30471769822097981160
OFFSET
0,2
COMMENTS
Signed version of A206300. - Peter Bala, Mar 05 2020
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A(x) = A(x)^3 - 4*x.
(2) A(x) = sqrt(1 + 4*x/A(x)).
(3) A(x*sqrt(1+4*x)) = sqrt(1+4*x).
(4) [x^n] A(x)^(n+2*k) = 0 for k=1..n-1, for n >= 2.
From Vaclav Kotesovec, Aug 22 2013: (Start)
a(n) = (-1)^(n+1) * 3^(3*n/2-1) * 4^(n-1) * GAMMA(n/2 - 1/6) * GAMMA(n/2 + 1/6)/(Pi*n!).
|a(n)| ~ 6^(n-1)*3^(n/2)/(sqrt(Pi/2)*n^(3/2)).
D-finite with recurrence: (n-1)*n*a(n) = 12*(3*n-7)*(3*n-5)*a(n-2). (End)
G.f.: (2/sqrt(3))*cosh(1/3*arccosh(sqrt(108)*x)). - Vladimir Kruchinin, Oct 11 2022
EXAMPLE
G.f.: A(x) = 1 + 2*x - 6*x^2 + 32*x^3 - 210*x^4 + 1536*x^5 - 12012*x^6 + ..
The coefficients in the powers A(x)^n of the g.f. begin:
n= 1: [1, 2, -6, 32, -210, 1536,-12012, 98304, -831402, ...];
n= 2: [1, 4, -8, 40, -256, 1848,-14336, 116688, -983040, ...];
n= 3: [1, 6, -6, 32, -210, 1536,-12012, 98304, -831402, ...];
n= 4: [1, 8, 0, 16, -128, 1008, -8192, 68640, -589824, ...];
n= 5: [1, 10, 10, 0, -50, 512, -4620, 40960, -364650, ...];
n= 6: [1, 12, 24, -8, 0, 168, -2048, 20592, -196608, ...];
n= 7: [1, 14, 42, 0, 14, 0, -588, 8192, -90090, ...];
n= 8: [1, 16, 64, 32, 0, -32, 0, 2112, -32768, ...];
n= 9: [1, 18, 90, 96, -18, 0, 84, 0, -7722, ...];
n=10: [1, 20, 120, 200, 0, 24, 0, -240, 0, ...];
n=11: [1, 22, 154, 352, 110, 0, -44, 0, 726, ...];
n=12: [1, 24, 192, 560, 384, -48, 0, 96, 0, ...];
n=13: [1, 26, 234, 832, 910, 0, 52, 0, -234, ...];
n=14: [1, 28, 280, 1176, 1792, 392, 0, -80, 0, ...];
n=15: [1, 30, 330, 1600, 3150, 1536, -140, 0, 150, ...];
n=16: [1, 32, 384, 2112, 5120, 4032, 0, 128, 0, ...];
n=17: [1, 34, 442, 2720, 7854, 8704, 1428, 0, -170, ...];
n=18: [1, 36, 504, 3432, 11520, 16632, 6144, -432, 0, ...];
n=19: [1, 38, 570, 4256, 16302, 29184, 17556, 0, 342, ...];
n=20: [1, 40, 640, 5200, 22400, 48048, 40960, 5280, 0, ...]; ...
which illustrates the property [x^n] A(x)^(n+2*k) = 0 for k=1..n-1:
[x^2] A(x)^4 = 0;
[x^3] A(x)^5 = 0, [x^3] A(x)^7 = 0;
[x^4] A(x)^6 = 0, [x^4] A(x)^8 = 0, [x^4] A(x)^10 = 0; ...
[x^5] A(x)^7 = 0, [x^5] A(x)^9 = 0, [x^5] A(x)^11 = 0, [x^5] A(x)^13 = 0; ...
Related series:
sqrt(1+4*x) = 1 + 2*x - 2*x^2 + 4*x^3 - 10*x^4 + 28*x^5 - 84*x^6 + 264*x^7 - 858*x^8 + ... + (-1)^(n-1)*2*A000108(n-1)*x^n + ...
MATHEMATICA
CoefficientList[Series[x/InverseSeries[Series[x*Sqrt[1+4*x], {x, 0, 20}], x], {x, 0, 20}], x] (* Vaclav Kotesovec, Aug 22 2013 *)
PROG
(PARI) {a(n)=polcoeff(x/serreverse(x*sqrt(1+4*x +x^2*O(x^n))), n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A109572 A011820 A206300 * A361354 A357664 A321086
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 21 2013
STATUS
approved