The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A224883 a(n) = 2^(n^2) * binomial(n-1 + 1/2^(n-1), n). 3
 1, 2, 6, 60, 2550, 476476, 384115732, 1305385229720, 18382187112952806, 1060603038396055882860, 248959068848694059131153020, 236689359381076468102847994171880, 908758498534088142521911865612937786108, 14063550492706544341683006937639901739122886616 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..58 FORMULA G.f.: Sum_{n>=0} (-2)^n * log(1 - x/2^n)^n/n! = Sum_{n>=0} a(n)*x^n/2^(n^2). a(n) = (2^n/n!) * Product_{k=0..n-1} (2^(n-1)*k + 1). a(n) = [x^n] 1/(1 - 2^n*x)^(2/2^n). EXAMPLE G.f.: A(x) = 1 + 2*x/2 + 6*x^2/2^4 + 60*x^3/2^9 + 2550*x^4/2^16 + 476476*x^5/2^25 +...+ a(n)*x^n/2^(n^2) +... where A(x) = 1 - 2*log(1-x/2) + 4*log(1-x/4)^2/2! - 8*log(1-x/8)^3/3! + 16*log(1-x/16)^4/4! +...+ (-2)^n*log(1-x/2^n)^n/n! +... Illustrate a(n) = [x^n] 1/(1 - 2^n*x)^(2/2^n): (1-x)^(-2/1) = (1) + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 +... (1-2*x)^(-2/2) = 1 + (2)*x + 4*x^2 + 8*x^3 + 16*x^4 + 32*x^5 +... (1-4*x)^(-2/4) = 1 + 2*x + (6)*x^2 + 20*x^3 + 70*x^4 + 252*x^5 +... (1-8*x)^(-2/8) = 1 + 2*x + 10*x^2 + (60)*x^3 + 390*x^4 + 2652*x^5 +... (1-16*x)^(-2/16) = 1 + 2*x + 18*x^2 + 204*x^3 + (2550)*x^4 + 33660*x^5 +... (1-32*x)^(-2/32) = 1 + 2*x + 34*x^2 + 748*x^3 + 18326*x^4 + (476476)*x^5 +... where the coefficients in parenthesis form the initial terms of this sequence. Particular values. A(1) = 1 + 2*log(2) + 4*log(4/3)^2/2! + 8*log(8/7)^3/3! + 16*log(16/15)^4/4! +... A(1/2) = 1 + 2*log(4/3) + 4*log(8/7)^2/2! + 8*log(16/15)^3/3! +... A(1/4) = 1 + 2*log(8/7) + 4*log(16/15)^2/2! + 8*log(32/31)^3/3! +... A(3/2) = 1 + 2*log(4) + 4*log(8/5)^2/2! + 8*log(16/13)^3/3! + 16*log(32/29)^4/4! +... Explicitly, A(1) = 2.55500248436101360804704969796239525102504151... A(1/2) = 1.61138451105646219391156983544059555709337920... A(1/4) = 1.27543593708175757392940597050033002345086132... A(3/2) = 4.22639446385430649517540615961613624264078875... MATHEMATICA Table[2^(n^2) Binomial[n-1+1/2^(n-1), n], {n, 0, 20}] (* Harvey P. Dale, Feb 01 2017 *) PROG (PARI) {a(n)=2^(n^2)*binomial(n-1+1/2^(n-1), n)} for(n=0, 20, print1(a(n), ", ")) (PARI) {a(n)=(2^n/n!)*prod(k=0, n-1, 2^(n-1)*k + 1)} for(n=0, 20, print1(a(n), ", ")) (PARI) {a(n)=2^(n^2)*polcoef(sum(k=0, n, (-2)^k*log(1-x/2^k +x*O(x^n))^k/k!), n)} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A159558, A246900. Sequence in context: A156472 A108640 A084971 * A001577 A156503 A077175 Adjacent sequences: A224880 A224881 A224882 * A224884 A224885 A224886 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 23 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 22:50 EDT 2024. Contains 373412 sequences. (Running on oeis4.)