login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A108640 a(n) = Product_{k=1..n} sigma_{n-k}(k), where sigma_m(k) = sum{j|k} j^m. 1
1, 2, 6, 60, 1260, 239904, 123263712, 872883648000, 35330106763980000, 15502816844111220549120, 32196148399600498119169883520, 2560463149313858442381787649990400000, 717635502576022020068175045395317927056000000 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
EXAMPLE
a(5) = 1^4 * (1^3 +2^3) * (1^2 +3^2) * (1^1 +2^1 +4^1) * (1^0 +5^0) = 1 * 9 * 10 * 7 * 2 = 1260.
MAPLE
with(numtheory): s:=proc(n, k) local div: div:=divisors(n): sum(div[j]^k, j=1..tau(n)) end: a:=n->product(s(i, n-i), i=1..n): seq(a(n), n=1..14); # Emeric Deutsch, Jul 13 2005
MATHEMATICA
Table[Product[DivisorSigma[j, n-j], {j, 0, n-1}], {n, 30}] (* G. C. Greubel, Oct 18 2023 *)
PROG
(PARI) a(n) = prod(k=1, n, sigma(k, n-k)); \\ Michel Marcus, Aug 16 2019
(Magma)
A108639:= func< n | (&*[DivisorSigma(j, n-j): j in [0..n-1]]) >;
[A108639(n): n in [1..30]]; // G. C. Greubel, Oct 18 2023
(SageMath)
def A108640(n): return product(sigma(n-j, j) for j in range(n))
[A108640(n) for n in range(1, 31)] # G. C. Greubel, Oct 18 2023
CROSSREFS
Cf. A108639 (with sums).
Sequence in context: A156451 A152617 A156472 * A084971 A224883 A001577
KEYWORD
nonn
AUTHOR
Leroy Quet, Jul 06 2005
EXTENSIONS
More terms from Emeric Deutsch, Jul 13 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 20:47 EST 2023. Contains 367695 sequences. (Running on oeis4.)