|
|
A152617
|
|
Smallest number m such that m has exactly n distinct prime factors and sigma(m) has exactly n distinct prime factors.
|
|
0
|
|
|
2, 6, 60, 1140, 22230, 778050, 28787850, 1237877550, 82937795850, 6054459097050, 802693813972050, 126022928793611850
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(13) <= 20541737393358731550. a(14) <= 3553720569051060558150. - Donovan Johnson, Jul 13 2011
|
|
LINKS
|
|
|
EXAMPLE
|
a(9) = 82937795850 = 2*3^2*5^2*7*13*19*37*43*67 (9 distinct prime factors). Sigma(82937795850) = 307906959360 = 2^11*3*5*7*11*13*17*19*31 (9 distinct prime factors).
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|