

A152618


a(n) = (n1)^2*(n+1).


7



1, 0, 3, 16, 45, 96, 175, 288, 441, 640, 891, 1200, 1573, 2016, 2535, 3136, 3825, 4608, 5491, 6480, 7581, 8800, 10143, 11616, 13225, 14976, 16875, 18928, 21141, 23520, 26071, 28800, 31713, 34816, 38115, 41616, 45325, 49248, 53391, 57760, 62361
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

For n>0 this is the same under substitution of variables as d(d2)^2, the number of connected components in Bertrand et al.: "We construct a polynomial of degree d in two variables whose Hessian curve has (d2)^2 connected components using Viro patchworking. In particular, this implies the existence of a smooth real algebraic surface of degree d in RP^3 whose parabolic curve is smooth and has d(d2)^2 connected components."  Jonathan Vos Post, Apr 30 2009
For n>0 a(n) is twice the area of the trapezoid created by plotting the four points (n1,n), (n,n1), (n*(n1)/2,n*(n+1)/2), (n*(n+1)/2,(n1)*n/2).  J. M. Bergot, Mar 22 2014


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Benoît Bertand and Erwan Brugallé, On the number of connected components of the parabolic curve, Comptes Rendus Mathématique, Vol. 348, No. 56 (2010), pp. 287289; arXiv preprint, arXiv:0904.4652 [math.AG], Apr 29 2009.  Jonathan Vos Post, Apr 30 2009


FORMULA

a(n) = n^3  n^2  n + 1 = A083074(n) + 2.  Jeremy Gardiner, Jun 23 2013
G.f.: (9*x^2  4*x + 1)/(1x)^4.  Vincenzo Librandi, Jun 25 2013
a(n+1) = A005449(n) + A002414(n), n > 0.  Wesley Ivan Hurt, Oct 06 2013
Sum_{n>1} 1/a(n) = (1/24) * (2*Pi^2  9).  Enrique Pérez Herrero, May 31 2015
Sum_{n>=2} (1)^n/a(n) = (Pi^2  3)/24.  Amiram Eldar, Jan 13 2021


MAPLE

A152618:=n>(n1)^2*(n+1); seq(A152618(k), k=0..100); # Wesley Ivan Hurt, Oct 06 2013


MATHEMATICA

f[n_]:=(n1)^2*(n+1); f[Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Feb 05 2011*)
CoefficientList[Series[(9 x^2  4 x + 1)/(1  x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 25 2013 *)


PROG

(MAGMA) [(n1)^2*(n+1): n in [0..50]]; // Vincenzo Librandi, Jun 25 2013
(PARI) a(n)=(n+1)*(n1)^2 \\ Charles R Greathouse IV, Mar 21 2014


CROSSREFS

Sequence in context: A271374 A147874 A092466 * A296947 A255211 A172482
Adjacent sequences: A152615 A152616 A152617 * A152619 A152620 A152621


KEYWORD

nonn,easy


AUTHOR

Philippe Deléham, Dec 09 2008


STATUS

approved



