login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147874
a(n) = (5*n-7)*(n-1).
11
0, 3, 16, 39, 72, 115, 168, 231, 304, 387, 480, 583, 696, 819, 952, 1095, 1248, 1411, 1584, 1767, 1960, 2163, 2376, 2599, 2832, 3075, 3328, 3591, 3864, 4147, 4440, 4743, 5056, 5379, 5712, 6055, 6408, 6771, 7144, 7527, 7920, 8323, 8736, 9159, 9592, 10035
OFFSET
1,2
COMMENTS
Zero followed by partial sums of A017305.
Appears to be related to various other sequences: a(n) = A036666(2*n-2) for n>1; a(n) = A115006(2*n-3) for n>1; a(n) = A118015(5*n-6) for n>1; a(n) = A008738(5*n-7) for n>1.
Even dodecagonal numbers divided by 4. - Omar E. Pol, Aug 19 2011
FORMULA
a(n) = Sum_{k=0..n-2} 10*k+3 = Sum_{k=0..n-2} A017305(k).
G.f.: x*(3 + 7*x)/(1-x)^3.
a(n) = 10*(n-2) + 3 + a(n-1).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A193872(n-1)/4. - Omar E. Pol, Aug 19 2011
a(n+1) = A131242(10n+2). - Philippe Deléham, Mar 27 2013
E.g.f.: -7 + (7 - 7*x + 5*x^2)*exp(x). - G. C. Greubel, Jul 30 2019
Sum_{n>=2} 1/a(n) = A294830. - Amiram Eldar, Nov 15 2020
MATHEMATICA
s=0; lst={s}; Do[s+=n++ +3; AppendTo[lst, s], {n, 0, 6!, 10}]; lst
Table[5n^2-12n+7, {n, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 3, 16}, 50] (* or *) PolygonalNumber[12, Range[0, 100, 2]]/4 (* Harvey P. Dale, Aug 08 2021 *)
PROG
(Magma) [ 0 ] cat [ &+[ 10*k+3: k in [0..n-1] ]: n in [1..50] ]; // Klaus Brockhaus, Nov 17 2008
(Magma) [ 5*n^2-2*n: n in [0..50] ];
(PARI) {m=50; a=7; for(n=0, m, print1(a=a+10*(n-1)+3, ", "))} \\ Klaus Brockhaus, Nov 17 2008
(Sage) [(5*n-7)*(n-1) for n in (1..50)] # G. C. Greubel, Jul 30 2019
(GAP) List([1..50], n-> (5*n-7)*(n-1)); # G. C. Greubel, Jul 30 2019
CROSSREFS
Cf. A017305 (10n+3), A036666, A115006, A118015 (floor(n^2/5)), A008738 (floor((n^2+1)/5)), A294830.
Cf. A051624, A193872. - Omar E. Pol, Aug 19 2011
Sequence in context: A280093 A081270 A271374 * A092466 A374296 A152618
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited by R. J. Mathar and Klaus Brockhaus, Nov 17 2008, Nov 20 2008
STATUS
approved