OFFSET
1,2
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..2000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = Sum_{k=0..n-2} 10*k+3 = Sum_{k=0..n-2} A017305(k).
G.f.: x*(3 + 7*x)/(1-x)^3.
a(n) = 10*(n-2) + 3 + a(n-1).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A193872(n-1)/4. - Omar E. Pol, Aug 19 2011
a(n+1) = A131242(10n+2). - Philippe Deléham, Mar 27 2013
E.g.f.: -7 + (7 - 7*x + 5*x^2)*exp(x). - G. C. Greubel, Jul 30 2019
Sum_{n>=2} 1/a(n) = A294830. - Amiram Eldar, Nov 15 2020
MATHEMATICA
s=0; lst={s}; Do[s+=n++ +3; AppendTo[lst, s], {n, 0, 6!, 10}]; lst
Table[5n^2-12n+7, {n, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 3, 16}, 50] (* or *) PolygonalNumber[12, Range[0, 100, 2]]/4 (* Harvey P. Dale, Aug 08 2021 *)
PROG
(Magma) [ 0 ] cat [ &+[ 10*k+3: k in [0..n-1] ]: n in [1..50] ]; // Klaus Brockhaus, Nov 17 2008
(Magma) [ 5*n^2-2*n: n in [0..50] ];
(PARI) {m=50; a=7; for(n=0, m, print1(a=a+10*(n-1)+3, ", "))} \\ Klaus Brockhaus, Nov 17 2008
(Sage) [(5*n-7)*(n-1) for n in (1..50)] # G. C. Greubel, Jul 30 2019
(GAP) List([1..50], n-> (5*n-7)*(n-1)); # G. C. Greubel, Jul 30 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Joseph Stephan Orlovsky, Nov 16 2008
EXTENSIONS
Edited by R. J. Mathar and Klaus Brockhaus, Nov 17 2008, Nov 20 2008
STATUS
approved