login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A147874 a(n) = (5*n-7)*(n-1). 9
0, 3, 16, 39, 72, 115, 168, 231, 304, 387, 480, 583, 696, 819, 952, 1095, 1248, 1411, 1584, 1767, 1960, 2163, 2376, 2599, 2832, 3075, 3328, 3591, 3864, 4147, 4440, 4743, 5056, 5379, 5712, 6055, 6408, 6771, 7144, 7527, 7920, 8323, 8736, 9159, 9592, 10035 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Zero followed by partial sums of A017305.

Appears to be related to various other sequences: a(n) = A036666(2*n-2) for n>1; a(n) = A115006(2*n-3) for n>1; a(n) = A118015(5*n-6) for n>1; a(n) = A008738(5*n-7) for n>1.

Even dodecagonal numbers divided by 4. - Omar E. Pol, Aug 19 2011

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..2000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = Sum_{k=0..n-2} 10*k+3 = Sum_{k=0..n-2} A017305(k).

G.f.: x*(3 + 7*x)/(1-x)^3.

a(n) = 10*(n-2) + 3 + a(n-1).

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

a(n) = A193872(n-1)/4. - Omar E. Pol, Aug 19 2011

a(n+1) = A131242(10n+2). - Philippe Deléham, Mar 27 2013

E.g.f.: -7 + (7 - 7*x + 5*x^2)*exp(x). - G. C. Greubel, Jul 30 2019

MATHEMATICA

s=0; lst={s}; Do[s+=n++ +3; AppendTo[lst, s], {n, 0, 6!, 10}]; lst

PROG

(MAGMA) [ 0 ] cat [ &+[ 10*k+3: k in [0..n-1] ]: n in [1..50] ]; // Klaus Brockhaus, Nov 17 2008

(MAGMA) [ 5*n^2-2*n: n in [0..50] ];

(PARI) {m=50; a=7; for(n=0, m, print1(a=a+10*(n-1)+3, ", "))} // Klaus Brockhaus, Nov 17 2008

(Sage) [(5*n-7)*(n-1) for n in (1..50)] # G. C. Greubel, Jul 30 2019

(GAP) List([1..50], n-> (5*n-7)*(n-1)); # G. C. Greubel, Jul 30 2019

CROSSREFS

Cf. A017305 (10n+3), A036666, A115006, A118015 (floor(n^2/5)), A008738 (floor((n^2+1)/5)).

Cf. A051624, A193872. - Omar E. Pol, Aug 19 2011

Sequence in context: A280093 A081270 A271374 * A092466 A152618 A296947

Adjacent sequences:  A147871 A147872 A147873 * A147875 A147876 A147877

KEYWORD

nonn,easy

AUTHOR

Vladimir Joseph Stephan Orlovsky, Nov 16 2008

EXTENSIONS

Edited by R. J. Mathar and Klaus Brockhaus, Nov 17 2008, Nov 20 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 10:55 EDT 2019. Contains 328056 sequences. (Running on oeis4.)