The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A147874 a(n) = (5*n-7)*(n-1). 11
 0, 3, 16, 39, 72, 115, 168, 231, 304, 387, 480, 583, 696, 819, 952, 1095, 1248, 1411, 1584, 1767, 1960, 2163, 2376, 2599, 2832, 3075, 3328, 3591, 3864, 4147, 4440, 4743, 5056, 5379, 5712, 6055, 6408, 6771, 7144, 7527, 7920, 8323, 8736, 9159, 9592, 10035 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Zero followed by partial sums of A017305. Appears to be related to various other sequences: a(n) = A036666(2*n-2) for n>1; a(n) = A115006(2*n-3) for n>1; a(n) = A118015(5*n-6) for n>1; a(n) = A008738(5*n-7) for n>1. Even dodecagonal numbers divided by 4. - Omar E. Pol, Aug 19 2011 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..2000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = Sum_{k=0..n-2} 10*k+3 = Sum_{k=0..n-2} A017305(k). G.f.: x*(3 + 7*x)/(1-x)^3. a(n) = 10*(n-2) + 3 + a(n-1). a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). a(n) = A193872(n-1)/4. - Omar E. Pol, Aug 19 2011 a(n+1) = A131242(10n+2). - Philippe Deléham, Mar 27 2013 E.g.f.: -7 + (7 - 7*x + 5*x^2)*exp(x). - G. C. Greubel, Jul 30 2019 Sum_{n>=2} 1/a(n) = A294830. - Amiram Eldar, Nov 15 2020 MATHEMATICA s=0; lst={s}; Do[s+=n++ +3; AppendTo[lst, s], {n, 0, 6!, 10}]; lst PROG (MAGMA) [ 0 ] cat [ &+[ 10*k+3: k in [0..n-1] ]: n in [1..50] ]; // Klaus Brockhaus, Nov 17 2008 (MAGMA) [ 5*n^2-2*n: n in [0..50] ]; (PARI) {m=50; a=7; for(n=0, m, print1(a=a+10*(n-1)+3, ", "))} \\ Klaus Brockhaus, Nov 17 2008 (Sage) [(5*n-7)*(n-1) for n in (1..50)] # G. C. Greubel, Jul 30 2019 (GAP) List([1..50], n-> (5*n-7)*(n-1)); # G. C. Greubel, Jul 30 2019 CROSSREFS Cf. A017305 (10n+3), A036666, A115006, A118015 (floor(n^2/5)), A008738 (floor((n^2+1)/5)), A294830. Cf. A051624, A193872. - Omar E. Pol, Aug 19 2011 Sequence in context: A280093 A081270 A271374 * A092466 A152618 A296947 Adjacent sequences:  A147871 A147872 A147873 * A147875 A147876 A147877 KEYWORD nonn,easy AUTHOR Vladimir Joseph Stephan Orlovsky, Nov 16 2008 EXTENSIONS Edited by R. J. Mathar and Klaus Brockhaus, Nov 17 2008, Nov 20 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 00:28 EDT 2021. Contains 346265 sequences. (Running on oeis4.)