login
A081270
Diagonal of triangular spiral in A051682.
3
3, 16, 38, 69, 109, 158, 216, 283, 359, 444, 538, 641, 753, 874, 1004, 1143, 1291, 1448, 1614, 1789, 1973, 2166, 2368, 2579, 2799, 3028, 3266, 3513, 3769, 4034, 4308, 4591, 4883, 5184, 5494, 5813, 6141, 6478, 6824, 7179, 7543, 7916, 8298, 8689, 9089, 9498, 9916
OFFSET
0,1
LINKS
Hacène Belbachir, Toufik Djellal, Jean-Gabriel Luque, On the self-convolution of generalized Fibonacci numbers, arXiv:1703.00323 [math.CO], 2017.
FORMULA
a(n) = A064226(n) + 2*n.
a(n) = 3*binomial(n,0) + 13*binomial(n,1) + 9*binomial(n,2); binomial transform of (3, 13, 9, 0, 0, 0, ...).
a(n) = (9*n^2 + 17*n + 6)/2.
G.f.: (3 + 7*x - x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 08 2012
E.g.f.: exp(x)*(6 + 26*x + 9*x^2)/2. - Elmo R. Oliveira, Nov 13 2024
MATHEMATICA
CoefficientList[Series[(3+7x-x^2)/(1-x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 08 2012 *)
PROG
(Magma) [(9*n^2+17*n+6)/2: n in [0..50]]; // Vincenzo Librandi, Jul 08 2012
(PARI) a(n)=(9*n^2+17*n+6)/2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Sequence in context: A196573 A196804 A280093 * A271374 A147874 A092466
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 15 2003
STATUS
approved