The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A051682 11-gonal (or hendecagonal) numbers: a(n) = n*(9*n-7)/2. 67
 0, 1, 11, 30, 58, 95, 141, 196, 260, 333, 415, 506, 606, 715, 833, 960, 1096, 1241, 1395, 1558, 1730, 1911, 2101, 2300, 2508, 2725, 2951, 3186, 3430, 3683, 3945, 4216, 4496, 4785, 5083, 5390, 5706, 6031, 6365, 6708, 7060, 7421, 7791, 8170 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS From Floor van Lamoen, Jul 21 2001: (Start) Write 0,1,2,3,4,... in a triangular spiral, then a(n) is the sequence found by reading the line from 0 in the direction 0,1,... The spiral begins: 15 / \ 16 14 / \ 17 3 13 / / \ \ 18 4 2 12 / \ \ 5 0---1 11 / \ 6---7---8---9--10 . (End) (1), (4+7), (7+10+13), (10+13+16+19), ... - Jon Perry, Sep 10 2004 This sequence does not contain any triangular numbers other than 0 and 1. See A188892. - T. D. Noe, Apr 13 2011 Sequence found by reading the line from 0, in the direction 0, 11, ... and the parallel line from 1, in the direction 1, 30, ..., in the square spiral whose vertices are the generalized 11-gonal numbers A195160. - Omar E. Pol, Jul 18 2012 Starting with offset 1, the sequence is the binomial transform of (1, 10, 9, 0, 0, 0, ...). - Gary W. Adamson, Aug 01 2015 REFERENCES Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196. E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6. Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94. LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT]. Index to sequences related to polygonal numbers Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = n*(9*n-7)/2. G.f.: x*(1+8*x)/(1-x)^3. Row sums of triangle A131432. - Gary W. Adamson, Jul 10 2007 a(n) = 9*n + a(n-1) - 8 (with a(0)=0). - Vincenzo Librandi, Aug 06 2010 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=1, a(2)=11. - Harvey P. Dale, May 07 2012 a(n) = A218470(9n). - Philippe Deléham, Mar 27 2013 a(9*a(n)+37*n+1) = a(9*a(n)+37*n) + a(9*n+1). - Vladimir Shevelev, Jan 24 2014 a(n+y) - a(n-y-1) = (a(n+x) - a(n-x-1))*(2*y+1)/(2*x+1), 0 <= x < n, y <= x, a(0)=0. - Gionata Neri, May 03 2015 a(n) = A000217(n-1) + A000217(3*n-2) - A000217(n-2). - Charlie Marion, Dec 21 2019 Product_{n>=2} (1 - 1/a(n)) = 9/11. - Amiram Eldar, Jan 21 2021 E.g.f.: exp(x)*x*(2 + 9*x)/2. - Stefano Spezia, Dec 25 2022 MATHEMATICA Table[n (9n-7)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 1, 11}, 51] (* Harvey P. Dale, May 07 2012 *) PROG (PARI) a(n)=(9*n-7)*n/2 \\ Charles R Greathouse IV, Jun 16 2011 (Magma) [n*(9*n-7)/2 : n in [0..50]]; // Wesley Ivan Hurt, Aug 01 2015 CROSSREFS First differences of A007586. Cf. A093644 ((9, 1) Pascal, column m=2). Partial sums of A017173. Cf. A000217, A004188, A131432, A188892, A195160, A218470. Sequence in context: A162734 A163060 A247433 * A109943 A303856 A137411 Adjacent sequences: A051679 A051680 A051681 * A051683 A051684 A051685 KEYWORD nonn,easy AUTHOR Barry E. Williams STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 20:01 EDT 2023. Contains 365649 sequences. (Running on oeis4.)