login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162734
An alternating sum of all numbers from the n-th up to the (n+1)st isolated prime.
3
11, 30, 42, 50, 60, 73, 81, 86, 93, 105, 120, 129, 144, 160, 165, 170, 192, 217, 228, 242, 254, 260, 270, 285, 300, 312, 324, 334, 345, 356, 363, 370, 376, 381, 386, 393, 399, 405, 424, 441, 446, 453, 462, 473, 483, 489, 495, 501, 506, 525, 544, 552, 560
OFFSET
1,1
COMMENTS
11 followed by the average of each two consecutive non-twin primes. - Colin Barker, Jul 17 2014
LINKS
FORMULA
a(n) = sum_{j= A007510(n).. A007510(n+1)} (-1)^(j+1)*j = A001057(A007510(n+1))-A001057(A007510(n)-1).
EXAMPLE
a(1) = -2+3-4+5-6+7-8+9-10+11-12+13-14+15-16+17-18+19-20+21-22+23 = 11.
a(2) = 23-24+25-26+27-28+29-30+31-32+33-34+35-36+37 = 30.
MAPLE
N:= 1000: # to get all terms where the larger non-twin <= N
Primes:= select(isprime, {seq(2*i-1, i=1..floor((N+1)/2))}):
NonTwins:= Primes minus (map(t->t+2, Primes) union map(t->t-2, Primes)):
11, seq((NonTwins[i]+NonTwins[i+1])/2, i=1..nops(NonTwins)-1); # Robert Israel, Jul 21 2014
PROG
(PARI)
non_twin_primes(pmax) = my(s=[]); forprime(p=2, pmax, if(!isprime(p-2) && !isprime(p+2), s=concat(s, p))); s
a162734(maxp) = my(ntp=non_twin_primes(maxp)); vector(#ntp-1, n, sum(k=ntp[n], ntp[n+1], -k*(-1)^k))
a162734(500) \\ Colin Barker, Jul 17 2014
(Python)
from sympy import isprime, primerange
def nontwins(N):
return [p for p in primerange(1, N+1) if not (isprime(p-2) or isprime(p+2))]
def auptont(N): # all terms where the larger non-twin <= N
nt = nontwins(N)
return [sum((-1)**(j+1)*j for j in range(nt[i], nt[i+1]+1)) for i in range(len(nt)-1)]
print(auptont(565)) # Michael S. Branicky, Nov 30 2021
CROSSREFS
Cf. A007510.
Sequence in context: A271348 A057739 A146751 * A163060 A247433 A051682
KEYWORD
nonn,less
AUTHOR
EXTENSIONS
Replaced 55 by 60 and 447 by 446 - R. J. Mathar, Sep 23 2009
STATUS
approved