login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A162737
G.f. is the polynomial (Product_{k=1..31} (1 - x^(3*k)))/(1-x)^31.
1
1, 31, 496, 5455, 46345, 324136, 1942335, 10249065, 48578364, 209961884, 837318680, 3110233844, 10844253964, 35718892168, 111747443068, 333597393565, 954069339889, 2623073605414, 6953911464088, 17823614247238, 44273067884650
OFFSET
0,2
COMMENTS
This is a row of the triangle in A162499. Only finitely many terms are nonzero.
LINKS
MAPLE
m:=31: seq(coeff(series(mul((1-x^(3*i)), i=1..m)/(1-x)^m, x, n+1), x, n), n=0..21); # Muniru A Asiru, Jul 07 2018
MATHEMATICA
CoefficientList[Series[Times@@(1-x^(3*Range[31]))/(1-x)^31, {x, 0, 50}], x] (* G. C. Greubel, Jul 07 2018 *)
PROG
(PARI) x='x+O('x^50); A = prod(k=1, 31, (1-x^(3*k)))/(1-x)^31; Vec(A) \\ G. C. Greubel, Jul 07 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); F:=(&*[(1-x^(3*k)): k in [1..31]])/(1-x)^31; Coefficients(R!(F)); // G. C. Greubel, Jul 07 2018
CROSSREFS
Sequence in context: A161636 A161977 A162378 * A010983 A022595 A125488
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 02 2009
STATUS
approved