login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162739
G.f. is the polynomial (Product_{k=1..32} (1 - x^(3*k)))/(1-x)^32.
1
1, 32, 528, 5983, 52328, 376464, 2318799, 12567864, 61146228, 271108112, 1108426792, 4218660636, 15062914600, 50781806768, 162529249836, 496126643401, 1450195983290, 4073269588704, 11027181052792, 28850795300030
OFFSET
0,2
COMMENTS
This is a row of the triangle in A162499. Only finitely many terms are nonzero.
LINKS
MAPLE
m:=32: seq(coeff(series(mul((1-x^(3*i)), i=1..m)/(1-x)^m, x, n+1), x, n), n=0..21); # Muniru A Asiru, Jul 07 2018
MATHEMATICA
CoefficientList[Series[Times@@(1-x^(3*Range[32]))/(1-x)^32, {x, 0, 50}], x] (* G. C. Greubel, Jul 07 2018 *)
PROG
(PARI) x='x+O('x^50); A = prod(k=1, 32, (1-x^(3*k)))/(1-x)^32; Vec(A) \\ G. C. Greubel, Jul 07 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); F:=(&*[(1-x^(3*k)): k in [1..32]])/(1-x)^32; Coefficients(R!(F)); // G. C. Greubel, Jul 07 2018
CROSSREFS
Sequence in context: A161640 A161987 A162379 * A010984 A022596 A130609
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 02 2009
STATUS
approved