login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. is the polynomial (Product_{k=1..32} (1 - x^(3*k)))/(1-x)^32.
1

%I #12 Sep 08 2022 08:45:46

%S 1,32,528,5983,52328,376464,2318799,12567864,61146228,271108112,

%T 1108426792,4218660636,15062914600,50781806768,162529249836,

%U 496126643401,1450195983290,4073269588704,11027181052792,28850795300030

%N G.f. is the polynomial (Product_{k=1..32} (1 - x^(3*k)))/(1-x)^32.

%C This is a row of the triangle in A162499. Only finitely many terms are nonzero.

%H G. C. Greubel, <a href="/A162739/b162739.txt">Table of n, a(n) for n = 0..1552</a>

%p m:=32: seq(coeff(series(mul((1-x^(3*i)),i=1..m)/(1-x)^m, x,n+1),x,n),n=0..21); # _Muniru A Asiru_, Jul 07 2018

%t CoefficientList[Series[Times@@(1-x^(3*Range[32]))/(1-x)^32, {x, 0, 50}], x] (* _G. C. Greubel_, Jul 07 2018 *)

%o (PARI) x='x+O('x^50); A = prod(k=1, 32, (1-x^(3*k)))/(1-x)^32; Vec(A) \\ _G. C. Greubel_, Jul 07 2018

%o (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); F:=(&*[(1-x^(3*k)): k in [1..32]])/(1-x)^32; Coefficients(R!(F)); // _G. C. Greubel_, Jul 07 2018

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Dec 02 2009