login
A162742
Reverse digits in the binary representation of each prime base in the prime factorization of n.
3
1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 13, 3, 11, 7, 15, 1, 17, 9, 25, 5, 21, 13, 29, 3, 25, 11, 27, 7, 23, 15, 31, 1, 39, 17, 35, 9, 41, 25, 33, 5, 37, 21, 53, 13, 45, 29, 61, 3, 49, 25, 51, 11, 43, 27, 65, 7, 75, 23, 55, 15, 47, 31, 63, 1, 55, 39, 97, 17, 87, 35, 113, 9, 73, 41, 75, 25, 91, 33
OFFSET
1,3
COMMENTS
Base-2 variant of A071786: apply the bit-reversion A030101 to each of the primes in the bases of the prime factorization of n.
LINKS
FORMULA
A161955(n) = A030101(a(n)).
EXAMPLE
At n=8=2^3, represent 2 as 10 in binary, reverse 10 to give 1, and recombine as 1^3=1 = a(8). At n=14=2*7 =(10)*(111) in binary, reverse the factors to give (1)*(111)=1*7=7=a(14).
MAPLE
A030101 := proc(n) local dgs ; dgs := convert(n, base, 2) ; add( op(-i, dgs)*2^(i-1), i=1..nops(dgs)) ; end:
A162742 := proc(n) local a, p ; a := 1 ; for p in ifactors(n)[2] do a := a* A030101(op(1, p))^op(2, p) ; od: a; end:
MATHEMATICA
f[p_, e_] := IntegerReverse[p, 2]^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 24 2023 *)
PROG
(Python)
from math import prod
from sympy import factorint
def A162742(n): return prod(int(bin(f)[2:][::-1], 2)**e for f, e in factorint(n).items())
print([A162742(n) for n in range(1, 81)]) # Michael S. Branicky, Oct 07 2024
CROSSREFS
Cf. A030101, A071786, A161955, A376857 (fixed points).
Sequence in context: A171968 A093474 A030101 * A348363 A379015 A081432
KEYWORD
base,easy,nonn,mult
AUTHOR
R. J. Mathar, Jul 12 2009
EXTENSIONS
Cleaned up the definition and corrected the second example - R. J. Mathar, Aug 03 2009
STATUS
approved