OFFSET
1,2
COMMENTS
The range of A007500 is a subset of the range of this sequence. - Reinhard Zumkeller, Jul 06 2009
Prime factors counted with multiplicity. - Harvey P. Dale, Jul 08 2017
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..10000
EXAMPLE
a(143) = a(11*13) = a(11)*a(13) = 11*31 = 341.
MAPLE
read("transforms") ; A071786 := proc(n) local ifs, a, d ; ifs := ifactors(n)[2] ; a := 1 ; for d in ifs do a := a*digrev(op(1, d))^op(2, d) ; od: a ; end: # R. J. Mathar, Jun 16 2009
# second Maple program:
r:= n-> (s-> parse(cat(seq(s[-i], i=1..length(s)))))(""||n):
a:= n-> mul(r(i[1])^i[2], i=ifactors(n)[2]):
seq(a(n), n=1..100); # Alois P. Heinz, Jun 19 2017
MATHEMATICA
Table[Times@@IntegerReverse/@Flatten[Table[#[[1]], #[[2]]]&/@ FactorInteger[ n]], {n, 80}] (* Harvey P. Dale, Jul 08 2017 *)
PROG
(Haskell)
a071786 = product . map a004086 . a027746_row
-- Reinhard Zumkeller, Oct 14 2011
(Python)
from sympy import factorint
from operator import mul
from functools import reduce
def A071786(n):
return 1 if n==1 else reduce(mul, (int(str(p)[::-1])**e for p, e in factorint(n).items())) # Chai Wah Wu, Aug 14 2014
(PARI) rev(n)=fromdigits(Vecrev(digits(n)))
a(n)=my(f=factor(n)); prod(i=1, #f~, rev(f[i, 1])^f[i, 2]) \\ Charles R Greathouse IV, Jun 28 2015
CROSSREFS
KEYWORD
AUTHOR
Reinhard Zumkeller, Jun 06 2002
STATUS
approved