login
A071786
In prime factorization of n replace each prime with its reversal (in decimal notation).
13
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 31, 14, 15, 16, 71, 18, 91, 20, 21, 22, 32, 24, 25, 62, 27, 28, 92, 30, 13, 32, 33, 142, 35, 36, 73, 182, 93, 40, 14, 42, 34, 44, 45, 64, 74, 48, 49, 50, 213, 124, 35, 54, 55, 56, 273, 184, 95, 60, 16, 26, 63, 64, 155, 66, 76, 284, 96, 70, 17, 72
OFFSET
1,2
COMMENTS
The range of A007500 is a subset of the range of this sequence. - Reinhard Zumkeller, Jul 06 2009
Prime factors counted with multiplicity. - Harvey P. Dale, Jul 08 2017
FORMULA
Completely multiplicative with a(p) = A004086(p), p prime.
a(A000040(n)) = A004087(n).
EXAMPLE
a(143) = a(11*13) = a(11)*a(13) = 11*31 = 341.
MAPLE
read("transforms") ; A071786 := proc(n) local ifs, a, d ; ifs := ifactors(n)[2] ; a := 1 ; for d in ifs do a := a*digrev(op(1, d))^op(2, d) ; od: a ; end: # R. J. Mathar, Jun 16 2009
# second Maple program:
r:= n-> (s-> parse(cat(seq(s[-i], i=1..length(s)))))(""||n):
a:= n-> mul(r(i[1])^i[2], i=ifactors(n)[2]):
seq(a(n), n=1..100); # Alois P. Heinz, Jun 19 2017
MATHEMATICA
Table[Times@@IntegerReverse/@Flatten[Table[#[[1]], #[[2]]]&/@ FactorInteger[ n]], {n, 80}] (* Harvey P. Dale, Jul 08 2017 *)
PROG
(Haskell)
a071786 = product . map a004086 . a027746_row
-- Reinhard Zumkeller, Oct 14 2011
(Python)
from sympy import factorint
from operator import mul
from functools import reduce
def A071786(n):
return 1 if n==1 else reduce(mul, (int(str(p)[::-1])**e for p, e in factorint(n).items())) # Chai Wah Wu, Aug 14 2014
(PARI) rev(n)=fromdigits(Vecrev(digits(n)))
a(n)=my(f=factor(n)); prod(i=1, #f~, rev(f[i, 1])^f[i, 2]) \\ Charles R Greathouse IV, Jun 28 2015
CROSSREFS
Cf. A151764, A161594, A151765. For records see A151766, A151767.
Cf. A151768 (complement), A376858 (fixed points).
Cf. A027746.
Sequence in context: A277650 A377913 A341090 * A151766 A004852 A342046
KEYWORD
nonn,base,mult,look
AUTHOR
Reinhard Zumkeller, Jun 06 2002
STATUS
approved