login
A071785
In prime factorization of n replace each prime with the sum of its decimal digits.
1
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 12, 4, 14, 15, 16, 8, 18, 10, 20, 21, 4, 5, 24, 25, 8, 27, 28, 11, 30, 4, 32, 6, 16, 35, 36, 10, 20, 12, 40, 5, 42, 7, 8, 45, 10, 11, 48, 49, 50, 24, 16, 8, 54, 10, 56, 30, 22, 14, 60, 7, 8, 63, 64, 20, 12, 13, 32, 15, 70, 8, 72
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p) = A007953(p), p prime.
a(n) = n iff n is 7-smooth (A002473).
EXAMPLE
a(143) = a(11*13) = a(11)*a(13) = (1+1)*(1+3) = 2*4 = 8.
MAPLE
a:= n-> mul(add(j, j=convert(i[1], base, 10))^i[2], i=ifactors(n)[2]):
seq(a(n), n=1..72); # Alois P. Heinz, Oct 22 2021
MATHEMATICA
a[n_] := Product[{p, e} = pe; Total[IntegerDigits[p]]^e, {pe, FactorInteger[n]}];
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 22 2021 *)
PROG
(PARI) a(n, base=10) = my (f=factor(n)); prod(i=1, #f~, sumdigits(f[i, 1], base)^f[i, 2]) \\ Rémy Sigrist, Feb 19 2019
CROSSREFS
Cf. A002473 (fixed points), A007953, A072084 (binary variant).
Sequence in context: A114925 A043270 A089898 * A351868 A325721 A079050
KEYWORD
nonn,base,mult
AUTHOR
Reinhard Zumkeller, Jun 06 2002
STATUS
approved