This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007586 11-gonal (or hendecagonal) pyramidal numbers: n(n+1)(3n-2)/2. (Formerly M4835) 10
 0, 1, 12, 42, 100, 195, 336, 532, 792, 1125, 1540, 2046, 2652, 3367, 4200, 5160, 6256, 7497, 8892, 10450, 12180, 14091, 16192, 18492, 21000, 23725, 26676, 29862, 33292, 36975, 40920, 45136, 49632, 54417, 59500, 64890, 70596, 76627, 82992, 89700, 96760, 104181 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Starting with 1 equals binomial transform of [1, 11, 19, 9, 0, 0, 0,...]. - Gary W. Adamson, Nov 02 2007 REFERENCES A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194. E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1). FORMULA G.f.: x*(1+8*x)/(1-x)^4. a(0)=0, a(1)=1, a(2)=12, a(3)=42; for n>3, a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Apr 09 2012 a(n) = sum( (n-i)*(9*i+1), i=0..n-1 ), with a(0)=0. - Bruno Berselli, Feb 10 2014 EXAMPLE After 0, the sequence is provided by the row sums of the triangle (see above, third formula): 1; 2, 10; 3, 20, 19; 4, 30, 38, 28; 5, 40, 57, 56, 37; 6, 50, 76, 84, 74, 46, etc. - Vincenzo Librandi, Feb 12 2014 MAPLE restart: a:=n->sum(sum(k, j=3..n), k=0..n): seq(a(n), n=1..53):b:=n->sum(sum(n, j=1..n), k=0..n): seq(a(n), n=1..53):c:=b+a:seq(c(n), n=0..35); # Zerinvary Lajos, Aug 24 2008 a:=n->add(binomial(n, 2)+add(n, j=3..n), j=2..n):seq(a(n), n=1..40); # Zerinvary Lajos, Aug 27 2008 MATHEMATICA Table[n(n+1)(3n-2)/2, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 1, 12, 42}, 40] (* Harvey P. Dale, Apr 09 2012 *) CoefficientList[Series[x (1 + 8 x)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *) PROG (MAGMA) I:=[0, 1, 12, 42]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4) : n in [1..50]]; // Vincenzo Librandi, Feb 12 2014 (PARI) a(n)=n*(n+1)*(3*n-2)/2 \\ Charles R Greathouse IV, Oct 07 2015 CROSSREFS Cf. A051682. Cf. A093644 ((9, 1) Pascal, column m=3). Cf. similar sequences listed in A237616. Sequence in context: A090554 A009948 A193068 * A228391 A122973 A074356 Adjacent sequences:  A007583 A007584 A007585 * A007587 A007588 A007589 KEYWORD nonn,easy,nice AUTHOR EXTENSIONS More terms from Vincenzo Librandi, Feb 12 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 22:07 EST 2018. Contains 318087 sequences. (Running on oeis4.)