OFFSET
0,3
COMMENTS
Starting with 1 equals binomial transform of [1, 11, 19, 9, 0, 0, 0, ...]. - Gary W. Adamson, Nov 02 2007
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
G.f.: x*(1+8*x)/(1-x)^4.
a(0)=0, a(1)=1, a(2)=12, a(3)=42; for n>3, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Apr 09 2012
a(n) = Sum_{i=0..n-1} (n-i)*(9*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
From Amiram Eldar, Jun 28 2020: (Start)
Sum_{n>=1} 1/a(n) = (9*log(3) + sqrt(3)*Pi - 4)/10.
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(3)*Pi + 2 - 4*log(2))/5. (End)
EXAMPLE
From Vincenzo Librandi, Feb 12 2014: (Start)
After 0, the sequence is provided by the row sums of the triangle (see above, third formula):
1;
2, 10;
3, 20, 19;
4, 30, 38, 28;
5, 40, 57, 56, 37;
6, 50, 76, 84, 74, 46; etc. (End)
MAPLE
seq(n*(n+1)*(3*n-2)/2, n=0..45); # G. C. Greubel, Aug 30 2019
MATHEMATICA
Table[n(n+1)(3n-2)/2, {n, 0, 45}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 1, 12, 42}, 45] (* Harvey P. Dale, Apr 09 2012 *)
CoefficientList[Series[x(1+8x)/(1-x)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Feb 12 2014 *)
PROG
(Magma) I:=[0, 1, 12, 42]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4) : n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
(PARI) a(n)=n*(n+1)*(3*n-2)/2 \\ Charles R Greathouse IV, Oct 07 2015
(Sage) [n*(n+1)*(3*n-2)/2 for n in (0..45)] # G. C. Greubel, Aug 30 2019
(GAP) List([0..45], n-> n*(n+1)*(3*n-2)/2); # G. C. Greubel, Aug 30 2019
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
More terms from Vincenzo Librandi, Feb 12 2014
STATUS
approved