login
A007586
11-gonal (or hendecagonal) pyramidal numbers: n*(n+1)*(3*n-2)/2.
(Formerly M4835)
11
0, 1, 12, 42, 100, 195, 336, 532, 792, 1125, 1540, 2046, 2652, 3367, 4200, 5160, 6256, 7497, 8892, 10450, 12180, 14091, 16192, 18492, 21000, 23725, 26676, 29862, 33292, 36975, 40920, 45136, 49632, 54417, 59500, 64890, 70596, 76627, 82992, 89700, 96760, 104181
OFFSET
0,3
COMMENTS
Starting with 1 equals binomial transform of [1, 11, 19, 9, 0, 0, 0, ...]. - Gary W. Adamson, Nov 02 2007
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
G.f.: x*(1+8*x)/(1-x)^4.
a(0)=0, a(1)=1, a(2)=12, a(3)=42; for n>3, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Apr 09 2012
a(n) = Sum_{i=0..n-1} (n-i)*(9*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
From Amiram Eldar, Jun 28 2020: (Start)
Sum_{n>=1} 1/a(n) = (9*log(3) + sqrt(3)*Pi - 4)/10.
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(3)*Pi + 2 - 4*log(2))/5. (End)
EXAMPLE
From Vincenzo Librandi, Feb 12 2014: (Start)
After 0, the sequence is provided by the row sums of the triangle (see above, third formula):
1;
2, 10;
3, 20, 19;
4, 30, 38, 28;
5, 40, 57, 56, 37;
6, 50, 76, 84, 74, 46; etc. (End)
MAPLE
seq(n*(n+1)*(3*n-2)/2, n=0..45); # G. C. Greubel, Aug 30 2019
MATHEMATICA
Table[n(n+1)(3n-2)/2, {n, 0, 45}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 1, 12, 42}, 45] (* Harvey P. Dale, Apr 09 2012 *)
CoefficientList[Series[x(1+8x)/(1-x)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Feb 12 2014 *)
PROG
(Magma) I:=[0, 1, 12, 42]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4) : n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
(PARI) a(n)=n*(n+1)*(3*n-2)/2 \\ Charles R Greathouse IV, Oct 07 2015
(Sage) [n*(n+1)*(3*n-2)/2 for n in (0..45)] # G. C. Greubel, Aug 30 2019
(GAP) List([0..45], n-> n*(n+1)*(3*n-2)/2); # G. C. Greubel, Aug 30 2019
CROSSREFS
Cf. A051682.
Cf. A093644 ((9, 1) Pascal, column m=3).
Cf. similar sequences listed in A237616.
Sequence in context: A090554 A009948 A193068 * A228391 A334277 A122973
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Vincenzo Librandi, Feb 12 2014
STATUS
approved