login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007589
Dodecahedral surface numbers: a(0)=0, a(1)=1, a(2)=20, thereafter 2*((3*n-7)^2 + 21).
(Formerly M5083)
1
0, 1, 20, 50, 92, 170, 284, 434, 620, 842, 1100, 1394, 1724, 2090, 2492, 2930, 3404, 3914, 4460, 5042, 5660, 6314, 7004, 7730, 8492, 9290, 10124, 10994, 11900, 12842, 13820, 14834, 15884, 16970, 18092, 19250
OFFSET
0,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = Vertices + Edges*(n-2) + Faces*facenumber(n-3) = 20 + 30(n-2) + 12*A000326(n-3). - Mitch Harris, Oct 25 2006
From G. C. Greubel, Aug 30 2019: (Start)
G.f.: x*(1 + 17*x - 7*x^2 + x^3 + 24*x^4)/(1-x)^3.
E.g.f.: -140 -73*x -12*x^2 + (140 -66*x +18*x^2)*exp(x). (End)
MAPLE
seq(coeff(series(x*(1+17*x-7*x^2+x^3+24*x^4)/(1-x)^3, x, n+1), x, n), n = 0 .. 45); # G. C. Greubel, Aug 30 2019
MATHEMATICA
Join[{0, 1, 20}, 2((3Range[3, 40]-7)^2+21)] (* Harvey P. Dale, Sep 24 2011 *)
Join[{0, 1, 20}, CoefficientList[Series[2*(25-29*x+22*x^2)/(1-x)^3, {x, 0, 50}], x] ] (* Vincenzo Librandi, Jul 07 2012 *)
PROG
(Magma) I:=[0, 1, 20, 50, 92, 170]; [n le 6 select I[n] else 3*Self(n-1) -3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jul 07 2012
(PARI) my(x='x+O('x^45)); concat([0], Vec(x*(1+17*x-7*x^2+x^3+24*x^4)/(1-x)^3)) \\ G. C. Greubel, Aug 30 2019
(Sage)
def A007589_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(x*(1+17*x-7*x^2+x^3+24*x^4)/(1-x)^3).list()
A007589_list(45) # G. C. Greubel, Aug 30 2019
(GAP) a:=[50, 92, 170];; for n in [4..45] do a[n]:=3*a[n-1]-3*a[n-2]+ a[n-3]; od; Concatenation([0, 1, 20], a); # G. C. Greubel, Aug 30 2019
CROSSREFS
Sequence in context: A277553 A260093 A304832 * A182462 A231293 A227771
KEYWORD
nonn,easy
EXTENSIONS
Revised definition from N. J. A. Sloane, Sep 25 2011
STATUS
approved