login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dodecahedral surface numbers: a(0)=0, a(1)=1, a(2)=20, thereafter 2*((3*n-7)^2 + 21).
(Formerly M5083)
1

%I M5083 #42 Apr 25 2024 09:34:14

%S 0,1,20,50,92,170,284,434,620,842,1100,1394,1724,2090,2492,2930,3404,

%T 3914,4460,5042,5660,6314,7004,7730,8492,9290,10124,10994,11900,12842,

%U 13820,14834,15884,16970,18092,19250

%N Dodecahedral surface numbers: a(0)=0, a(1)=1, a(2)=20, thereafter 2*((3*n-7)^2 + 21).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A007589/b007589.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = Vertices + Edges*(n-2) + Faces*facenumber(n-3) = 20 + 30(n-2) + 12*A000326(n-3). - _Mitch Harris_, Oct 25 2006

%F From _G. C. Greubel_, Aug 30 2019: (Start)

%F G.f.: x*(1 + 17*x - 7*x^2 + x^3 + 24*x^4)/(1-x)^3.

%F E.g.f.: -140 -73*x -12*x^2 + (140 -66*x +18*x^2)*exp(x). (End)

%p seq(coeff(series(x*(1+17*x-7*x^2+x^3+24*x^4)/(1-x)^3, x, n+1), x, n), n = 0 .. 45); # _G. C. Greubel_, Aug 30 2019

%t Join[{0,1,20},2((3Range[3,40]-7)^2+21)] (* _Harvey P. Dale_, Sep 24 2011 *)

%t Join[{0,1,20}, CoefficientList[Series[2*(25-29*x+22*x^2)/(1-x)^3, {x,0,50}], x] ] (* _Vincenzo Librandi_, Jul 07 2012 *)

%o (Magma) I:=[0, 1, 20, 50, 92, 170]; [n le 6 select I[n] else 3*Self(n-1) -3*Self(n-2)+Self(n-3): n in [1..50]]; // _Vincenzo Librandi_, Jul 07 2012

%o (PARI) my(x='x+O('x^45)); concat([0], Vec(x*(1+17*x-7*x^2+x^3+24*x^4)/(1-x)^3)) \\ _G. C. Greubel_, Aug 30 2019

%o (Sage)

%o def A007589_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P(x*(1+17*x-7*x^2+x^3+24*x^4)/(1-x)^3).list()

%o A007589_list(45) # _G. C. Greubel_, Aug 30 2019

%o (GAP) a:=[50,92,170];; for n in [4..45] do a[n]:=3*a[n-1]-3*a[n-2]+ a[n-3]; od; Concatenation([0, 1, 20], a); # _G. C. Greubel_, Aug 30 2019

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_, _R. K. Guy_

%E Revised definition from _N. J. A. Sloane_, Sep 25 2011