login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147871
Expansion of Product_{k > 0} (1 + A147665(k)*x^k).
5
1, 1, 1, 3, 4, 7, 10, 15, 24, 37, 49, 73, 105, 142, 208, 294, 391, 538, 752, 988, 1359, 1812, 2410, 3232, 4270, 5598, 7454, 9721, 12639, 16625, 21445, 27649, 35793, 46235, 59141, 76215, 96975, 123262, 157671, 199625, 252591, 319792, 403262, 507682
OFFSET
0,4
FORMULA
a(n) = [x^n] Product_{k > 0} (1 + A147665(k)*x^k).
a(n) = Sum_{(b_1,...,b_n)} f(1)^b_1 * f(2)^b_2 * ... * f(n)^b_n, where f(m) = A147665(m), and the sum is taken over all lists (b_1,...,b_n) with b_j in {0,1} and Sum_{j=1..n} j*b_j = n. - Petros Hadjicostas, Apr 11 2020
EXAMPLE
From Petros Hadjicostas, Apr 11 2020: (Start)
Let f(m) = A147665(m). Using the strict partitions of each n (see A000009), we get
a(1) = f(1) = 1,
a(2) = f(2) = 1,
a(3) = f(3) + f(1)*f(2) = 2 + 1*1 = 3,
a(4) = f(4) + f(1)*f(3) = 2 + 1*2 = 4,
a(5) = f(5) + f(1)*f(4) + f(2)*f(3) = 3 + 1*2 + 1*2 = 7,
a(6) = f(6) + f(1)*f(5) + f(2)*f(4) + f(1)*f(2)*f(3) = 3 + 1*3 + 1*2 + 1*1*2 = 10,
a(7) = f(7) + f(1)*f(6) + f(2)*f(5) + f(3)*f(4) + f(1)*f(2)*f(4) = 3 + 1*3 + 1*3 + 2*2 + 1*1*2 = 15. (End)
MATHEMATICA
(*A147665*) f[0] = 0; f[1] = 1; f[2] = 1; f[n_] := f[n] = f[f[n - 1]] + If[Mod[ n, 3] == 0, f[f[n/3]], If[Mod[n, 3] == 1, f[f[(n - 1)/3]], f[n - f[(n - 2)/3]]]];
P[x_, n_] := P[x, n] = Product[1 + f[m]*x^m, {m, 0, n}];
Take[CoefficientList[P[x, 45], x], 45] (* Program simplified by Petros Hadjicostas, Apr 13 2020 *)
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Nov 16 2008
EXTENSIONS
Various sections edited by Petros Hadjicostas, Apr 11 2020
STATUS
approved