Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #53 Sep 08 2022 08:45:38
%S 0,3,16,39,72,115,168,231,304,387,480,583,696,819,952,1095,1248,1411,
%T 1584,1767,1960,2163,2376,2599,2832,3075,3328,3591,3864,4147,4440,
%U 4743,5056,5379,5712,6055,6408,6771,7144,7527,7920,8323,8736,9159,9592,10035
%N a(n) = (5*n-7)*(n-1).
%C Zero followed by partial sums of A017305.
%C Appears to be related to various other sequences: a(n) = A036666(2*n-2) for n>1; a(n) = A115006(2*n-3) for n>1; a(n) = A118015(5*n-6) for n>1; a(n) = A008738(5*n-7) for n>1.
%C Even dodecagonal numbers divided by 4. - _Omar E. Pol_, Aug 19 2011
%H Vincenzo Librandi, <a href="/A147874/b147874.txt">Table of n, a(n) for n = 1..2000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F a(n) = Sum_{k=0..n-2} 10*k+3 = Sum_{k=0..n-2} A017305(k).
%F G.f.: x*(3 + 7*x)/(1-x)^3.
%F a(n) = 10*(n-2) + 3 + a(n-1).
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
%F a(n) = A193872(n-1)/4. - _Omar E. Pol_, Aug 19 2011
%F a(n+1) = A131242(10n+2). - _Philippe Deléham_, Mar 27 2013
%F E.g.f.: -7 + (7 - 7*x + 5*x^2)*exp(x). - _G. C. Greubel_, Jul 30 2019
%F Sum_{n>=2} 1/a(n) = A294830. - _Amiram Eldar_, Nov 15 2020
%t s=0;lst={s};Do[s+=n++ +3;AppendTo[lst,s],{n,0,6!,10}];lst
%t Table[5n^2-12n+7,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{0,3,16},50] (* or *) PolygonalNumber[12,Range[0,100,2]]/4 (* _Harvey P. Dale_, Aug 08 2021 *)
%o (Magma) [ 0 ] cat [ &+[ 10*k+3: k in [0..n-1] ]: n in [1..50] ]; // _Klaus Brockhaus_, Nov 17 2008
%o (Magma) [ 5*n^2-2*n: n in [0..50] ];
%o (PARI) {m=50; a=7; for(n=0, m, print1(a=a+10*(n-1)+3, ","))} \\ _Klaus Brockhaus_, Nov 17 2008
%o (Sage) [(5*n-7)*(n-1) for n in (1..50)] # _G. C. Greubel_, Jul 30 2019
%o (GAP) List([1..50], n-> (5*n-7)*(n-1)); # _G. C. Greubel_, Jul 30 2019
%Y Cf. A017305 (10n+3), A036666, A115006, A118015 (floor(n^2/5)), A008738 (floor((n^2+1)/5)), A294830.
%Y Cf. A051624, A193872. - _Omar E. Pol_, Aug 19 2011
%K nonn,easy
%O 1,2
%A _Vladimir Joseph Stephan Orlovsky_, Nov 16 2008
%E Edited by _R. J. Mathar_ and _Klaus Brockhaus_, Nov 17 2008, Nov 20 2008