login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206302
G.f. satisfies: A(x) = Sum_{n>=0} x^n * Product_{d|n} A(x^d)^(n/d).
1
1, 1, 2, 5, 15, 45, 147, 484, 1649, 5698, 20055, 71373, 256998, 933458, 3418160, 12601291, 46739440, 174281272, 652962532, 2456802244, 9279423954, 35170693226, 133726116806, 509926989456, 1949634581725, 7472405641631, 28704432909043, 110496066015970
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 45*x^5 + 147*x^6 +...
such that, by definition,
A(x) = 1 + x*A(x) + x^2*A(x)^2*A(x^2) + x^3*A(x)^3*A(x^3) + x^4*A(x)^4*A(x^2)^2*A(x^4) + x^5*A(x)^5*A(x^5) + x^6*A(x)^6*A(x^2)^3*A(x^3)^2*A(x^6) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*exp(sumdiv(m, d, (m/d)*subst(log(A), x, x^d +x*O(x^n)))))); polcoeff(A, n)}
for(n=0, 35, print1(a(n), ", "))
CROSSREFS
Cf. A206301.
Sequence in context: A149907 A148355 A148356 * A149908 A149909 A149910
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 06 2012
STATUS
approved