login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206305
E.g.f. A(x) = Sum_{n>=0} a(n)*x^(2*n+1)/(2*n+1)! is inverse to f(x) = 2*x - tan(x).
1
1, 2, 56, 4304, 647552, 161009408, 59798825984, 31018594543616, 21421107883900928, 19000925396453752832, 21053097631093130264576, 28496291901064818145624064, 46267687031143770070546644992, 88754774204916230754873248841728, 198588172996269363811346709494104064
OFFSET
0,2
LINKS
F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
FORMULA
a(n) = (sum(k=1..2*n, (2*n+k)!*sum(j=1..k, (-1)^(j)/(k-j)!*((sum(l=0..j-1, (1/((j-l)!*l!)*sum(m=j-l..2*n-l+j, binomial(m-1,-l+j-1)*m!*2^(2*n-m+j)*(-1)^(n+m)*Stirling2(2*n-l+j,m)))/(2*n-l+j)!)))))), n>0, a(0)=1.
From Peter Bala, Aug 06 2012: (Start)
Alternative form of the o.g.f: x/2 - (1/2)*(x - 2*atan(x))^<-1> = x/2 - (1/2)*(Integral_{t = 0..x} 1/f(t) dt)^<-1>, where f(x) = (x^2+1)/(x^2-1) and <-1> denotes series reversion w.r.t. x.
Applying Theorem 4.1 of Dominici to invert the integral gives the result: for n >= 1, a(n) = (1/2)*D^(2*n+1)(x) evaluated at x = 0, where D is the operator (1+x^2)/(1-x^2)*d/dx.
Applying Theorem 1 of Bergeron et al. gives an interpretation for the sequence as counting a variety of trees defined by the degree function phi(x) = (1+x^2)/(1-x^2) = 1 + 2*x^2 + 2*x^4 + .... We find for n >= 1 that 2*a(n) gives the number of rooted increasing plane (ordered) trees on (2*n+1) vertices with no vertices of odd outdegree and where the vertices of even outdegree come in two colors.
(End)
a(n) ~ 2^(2*n) * n^(2*n) / (exp(2*n) * (Pi/2-1)^(2*n+1/2)). - Vaclav Kotesovec, Jan 26 2014
MATHEMATICA
nmax = 11; coes = CoefficientList[ x/2 - (1/2)*InverseSeries[ Series[(x - 2*ArcTan[x]), {x, 0, 2*nmax+2}], x], x]*Range[0, 2*nmax+1]!; a[n_] := coes[[2*n+2]]; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Sep 05 2012 *)
PROG
(Maxima) a(n):=if n=0 then 1 else (sum((2*n+k)!*sum((-1)^(j)/(k-j)!*((sum((1/((j-l)!*l!)*sum(binomial(m-1, -l+j-1)*m!*2^(2*n-m+j)*(-1)^(n+m)*stirling2(2*n-l+j, m), m, j-l, 2*n-l+j))/(2*n-l+j)!, l, 0, j-1))), j, 1, k), k, 1, 2*n));
(PARI) seq(n)={my(v=Vec(serlaplace(serreverse(2*x - tan(x + O(x^(2*n+2))))))); vector(n+1, i, v[2*i-1])} \\ Andrew Howroyd, Apr 28 2020
CROSSREFS
Sequence in context: A246001 A009555 A054959 * A325291 A326551 A253471
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Feb 06 2012
EXTENSIONS
Terms a(12) and beyond from Andrew Howroyd, Apr 28 2020
STATUS
approved