login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206304
E.g.f. is series reversion of x - log(1+x)^2.
2
1, 2, 6, 22, 80, 128, -2940, -63072, -932088, -11628648, -114829968, -417677856, 21173151792, 869103962400, 23125766258208, 492858262277472, 7960636847682816, 46152793911618432, -3484964629275707328, -212667378331722666240
OFFSET
1,2
LINKS
FORMULA
a(n) = (n-1)!*Sum_{k=0..n-1} binomial(n+k-1,n-1) * ( Sum_{j=0..k} binomial(k,j) * (Sum_{i=0..j} (-1)^i*binomial(j,i)*(2*(j-i))!*stirling1(n+j-i-1, 2*(j-i))/(n+j-i-1)!) )), n>0.
Lim sup n->infinity (|a(n)|/n!)^(1/n) = 1/abs((1+LambertW(-1/2))^2) = 1.57356815308645229... - Vaclav Kotesovec, Jan 22 2014
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x-Log[1+x]^2, {x, 0, 20}], x], x]*Range[0, 20]!] (* Vaclav Kotesovec, Jan 22 2014 *)
PROG
(Maxima) a(n):= ((n-1)!*sum(binomial(n+k-1, n-1)*sum(binomial(k, j) *sum(((-1)^(i)*binomial(j, i)*(2*(j-i))!*stirling1(n+j-i-1, 2*(j-i)))/(n+j-i-1)!, i, 0, j), j, 0, k), k, 0, n-1));
(SageMath)
m=40 # a = A206304
def b_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( x - log(1+x)^2 ).reverse().list()
a= b_list(m+1)
[factorial(n)*a[n] for n in range(1, m+1)] # G. C. Greubel, Dec 21 2022
CROSSREFS
Cf. A185151.
Sequence in context: A106434 A150228 A203038 * A201372 A072547 A150229
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Feb 06 2012
STATUS
approved