OFFSET
1,3
LINKS
Vladimir Kruchinin, The method for obtaining expressions for coefficients of reverse generating functions, arXiv:1211.3244 [math.CO], 2012.
FORMULA
a(n) = ((n-1)!*sum(k=1..n-1, binomial(n+k-1,n-1)*sum(j=1..k, (-1)^(j)*binomial(k,j)*sum(l=0..min(j,floor((n+j-1)/2)), (binomial(j,l)*(j-l)!*(-1)^l*Stirling2(n-2*l+j-1,j-l))/(n-2*l+j-1)!)))), n>1, a(1)=1.
Lim sup n->infinity (|a(n)|/n!)^(1/n) = 1/abs((1+LambertW(-1/2))^2) = 1.57356815308645229... - Vaclav Kotesovec, Jan 23 2014
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[E^x-x^2-1, {x, 0, 20}], x], x]*Range[0, 20]!] (* Vaclav Kotesovec, Jan 23 2014 *)
PROG
(Maxima) a(n):=if n=1 then 1 else ((n-1)!*sum(binomial(n+k-1, n-1)*sum((-1)^(j)*binomial(k, j)*sum((binomial(j, l)*(j-l)!*(-1)^l*stirling2(n-2*l+j-1, j-l))/(n-2*l+j-1)!, l, 0, min(j, floor((n+j-1)/2))), j, 1, k), k, 1, n-1));
CROSSREFS
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Jan 23 2012
STATUS
approved