login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184990
McKay-Thompson series of class 24C for the Monster group with a(0) = 1.
5
1, 1, 0, 2, -1, -2, 4, -2, -2, 6, -4, -4, 10, -6, -8, 16, -9, -10, 24, -14, -16, 36, -20, -24, 53, -30, -32, 76, -43, -48, 108, -60, -68, 150, -84, -92, 206, -114, -128, 280, -155, -172, 376, -208, -228, 504, -276, -304, 668, -366, -400, 878, -480, -524, 1148
OFFSET
-1,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (1/q) * psi(q) * phi(-q^4) / (psi(-q^3) * psi(-q^6)) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of eta(q^2)^2 * eta(q^4)^2 / (eta(q) * eta(q^3) * eta(q^8)* eta(q^24)) in powers of q.
Euler transform of period 24 sequence [ 1, -1, 2, -3, 1, 0, 1, -2, 2, -1, 1, -2, 1, -1, 2, -2, 1, 0, 1, -3, 2, -1, 1, 0, ...].
a(n) = A058573(n) unless n = 0.
EXAMPLE
1/q + 1 + 2*q^2 - q^3 - 2*q^4 + 4*q^5 - 2*q^6 - 2*q^7 + 6*q^8 - 4*q^9 + ...
MATHEMATICA
QP = QPochhammer; s=QP[q^2]^2*(QP[q^4]^2/(QP[q]*QP[q^3]*QP[q^8]*QP[q^24]))+ O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 14 2015, adapted from PARI *)
PROG
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^4 + A)^2 / (eta(x + A) * eta(x^3 + A) * eta(x^8 + A)* eta(x^24 + A)), n))}
CROSSREFS
Cf. A058573.
Sequence in context: A152251 A144025 A058573 * A206299 A276053 A117268
KEYWORD
sign
AUTHOR
Michael Somos, Feb 05 2012
STATUS
approved