login
A058573
McKay-Thompson series of class 24C for Monster.
4
1, 0, 0, 2, -1, -2, 4, -2, -2, 6, -4, -4, 10, -6, -8, 16, -9, -10, 24, -14, -16, 36, -20, -24, 53, -30, -32, 76, -43, -48, 108, -60, -68, 150, -84, -92, 206, -114, -128, 280, -155, -172, 376, -208, -228, 504, -276, -304, 668, -366, -400, 878, -480, -524, 1148
OFFSET
-1,4
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of -1 + (eta(q^2)*eta(q^4))^2/(eta(q)*eta(q^3)*eta(q^8)* eta(q^24)) in powers of q. - G. C. Greubel, Jun 04 2018
EXAMPLE
T24C = 1/q + 2*q^2 - q^3 - 2*q^4 + 4*q^5 - 2*q^6 - 2*q^7 + 6*q^8 - 4*q^9 - ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q*(-1 + (eta[q^2]*eta[q^4])^2/(eta[q]*eta[q^3]*eta[q^8]*eta[q^24])), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 04 2018 *)
PROG
(PARI) q='q+O('q^70); F= -1 + (eta(q^2)*eta(q^4))^2/(eta(q)*eta(q^3) *eta(q^8)*eta(q^24))/q; Vec(F) \\ G. C. Greubel, Jun 04 2018
CROSSREFS
Cf. A184990 (same sequence except for n=0).
Sequence in context: A247321 A152251 A144025 * A184990 A206299 A276053
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Michel Marcus, Feb 18 2014
STATUS
approved