The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A058571 McKay-Thompson series of class 24A for Monster. 2
 1, 3, 3, 7, 18, 21, 30, 57, 75, 104, 156, 207, 293, 411, 525, 712, 984, 1248, 1622, 2169, 2757, 3530, 4560, 5736, 7284, 9249, 11472, 14374, 18078, 22242, 27484, 34140, 41787, 51184, 62796, 76317, 92893, 112998, 136275, 164671 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Convolution cube of A112206. - Vaclav Kotesovec, Mar 12 2017 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..2000 (terms 0..50 from G. A. Edgar) D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994). FORMULA Expansion of q^(1/2) * (eta(q^2)^6 * eta(q^6)^6 / (eta(q)^3 * eta(q^3)^3 * eta(q^4)^3 * eta(q^12)^3)) in powers of q. - G. A. Edgar, Mar 11 2017 a(n) ~ exp(sqrt(2*n/3)*Pi) / (2^(5/4)*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Mar 12 2017 EXAMPLE T24A = 1/q + 3*q + 3*q^3 + 7*q^5 + 18*q^7 + 21*q^9 + 30*q^11 + 57*q^13 + ... MATHEMATICA nmax = 60; CoefficientList[Series[Product[((1 + x^k)*(1 + x^(3*k)) / ((1 + x^(2*k))*(1 + x^(6*k))))^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 12 2017 *) PROG (PARI) q='q+O('q^66); Vec( (eta(q^2)^6 * eta(q^6)^6 / (eta(q)^3 * eta(q^3)^3 * eta(q^4)^3 * eta(q^12)^3)) ) \\ Joerg Arndt, Mar 11 2017 CROSSREFS Cf. A000521, A007240, A014708, A007241, A007267, A045478, A112206, etc. Sequence in context: A032294 A146034 A032029 * A058492 A221303 A221378 Adjacent sequences:  A058568 A058569 A058570 * A058572 A058573 A058574 KEYWORD nonn AUTHOR N. J. A. Sloane, Nov 27 2000 EXTENSIONS Offset corrected by N. J. A. Sloane, Feb 17 2014 More terms from G. A. Edgar, Mar 11 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 17:16 EDT 2022. Contains 354092 sequences. (Running on oeis4.)